CoCa-GAN: Common-Feature-Learning-Based Context-Aware Generative Adversarial Network for Glioma Grading

Author(s):  
Pu Huang ◽  
Dengwang Li ◽  
Zhicheng Jiao ◽  
Dongming Wei ◽  
Guoshi Li ◽  
...  
2021 ◽  
Vol 11 (4) ◽  
pp. 1380
Author(s):  
Yingbo Zhou ◽  
Pengcheng Zhao ◽  
Weiqin Tong ◽  
Yongxin Zhu

While Generative Adversarial Networks (GANs) have shown promising performance in image generation, they suffer from numerous issues such as mode collapse and training instability. To stabilize GAN training and improve image synthesis quality with diversity, we propose a simple yet effective approach as Contrastive Distance Learning GAN (CDL-GAN) in this paper. Specifically, we add Consistent Contrastive Distance (CoCD) and Characteristic Contrastive Distance (ChCD) into a principled framework to improve GAN performance. The CoCD explicitly maximizes the ratio of the distance between generated images and the increment between noise vectors to strengthen image feature learning for the generator. The ChCD measures the sampling distance of the encoded images in Euler space to boost feature representations for the discriminator. We model the framework by employing Siamese Network as a module into GANs without any modification on the backbone. Both qualitative and quantitative experiments conducted on three public datasets demonstrate the effectiveness of our method.


2021 ◽  
Vol 14 (1) ◽  
pp. 123
Author(s):  
Xin Yao ◽  
Xiaoran Shi ◽  
Yaxin Li ◽  
Li Wang ◽  
Han Wang ◽  
...  

In the field of target classification, detecting a ground moving target that is easily covered in clutter has been a challenge. In addition, traditional feature extraction techniques and classification methods usually rely on strong subjective factors and prior knowledge, which affect their generalization capacity. Most existing deep-learning-based methods suffer from insufficient feature learning due to the lack of data samples, which makes it difficult for the training process to converge to a steady-state. To overcome these limitations, this paper proposes a Wasserstein generative adversarial network (WGAN) sample enhancement method for ground moving target classification (GMT-WGAN). First, the micro-Doppler characteristics of ground moving targets are analyzed. Next, a WGAN is constructed to generate effective time–frequency images of ground moving targets and thereby enrich the sample database used to train the classification network. Then, image quality evaluation indexes are introduced to evaluate the generated spectrogram samples, with an aim to verify the distribution similarity of generated and real samples. Afterward, by feeding augmented samples to the deep convolutional neural networks with good generalization capacity, the classification performance of the GMT-WGAN is improved. Finally, experiments conducted on different datasets validate the effectiveness and robustness of the proposed method.


2019 ◽  
Vol 490 (4) ◽  
pp. 5424-5439 ◽  
Author(s):  
Ping Guo ◽  
Fuqing Duan ◽  
Pei Wang ◽  
Yao Yao ◽  
Qian Yin ◽  
...  

ABSTRACT Discovering pulsars is a significant and meaningful research topic in the field of radio astronomy. With the advent of astronomical instruments, the volume and rate of data acquisition have grown exponentially. This development necessitates a focus on artificial intelligence (AI) technologies that can mine large astronomical data sets. Automatic pulsar candidate identification (APCI) can be considered as a task determining potential candidates for further investigation and eliminating the noise of radio-frequency interference and other non-pulsar signals. As reported in the existing literature, AI techniques, especially convolutional neural network (CNN)-based techniques, have been adopted for APCI. However, it is challenging to enhance the performance of CNN-based pulsar identification because only an extremely limited number of real pulsar samples exist, which results in a crucial class imbalance problem. To address these problems, we propose a framework that combines a deep convolution generative adversarial network (DCGAN) with a support vector machine (SVM). The DCGAN is used as a sample generation and feature learning model, and the SVM is adopted as the classifier for predicting the label of a candidate at the inference stage. The proposed framework is a novel technique, which not only can solve the class imbalance problem but also can learn the discriminative feature representations of pulsar candidates instead of computing hand-crafted features in the pre-processing steps. The proposed method can enhance the accuracy of the APCI, and the computer experiments performed on two pulsar data sets verified the effectiveness and efficiency of the proposed method.


2021 ◽  
Vol 13 (18) ◽  
pp. 3554
Author(s):  
Xiaowei Hu ◽  
Weike Feng ◽  
Yiduo Guo ◽  
Qiang Wang

Even though deep learning (DL) has achieved excellent results on some public data sets for synthetic aperture radar (SAR) automatic target recognition(ATR), several problems exist at present. One is the lack of transparency and interpretability for most of the existing DL networks. Another is the neglect of unknown target classes which are often present in practice. To solve the above problems, a deep generation as well as recognition model is derived based on Conditional Variational Auto-encoder (CVAE) and Generative Adversarial Network (GAN). A feature space for SAR-ATR is built based on the proposed CVAE-GAN model. By using the feature space, clear SAR images can be generated with given class labels and observation angles. Besides, the feature of the SAR image is continuous in the feature space and can represent some attributes of the target. Furthermore, it is possible to classify the known classes and reject the unknown target classes by using the feature space. Experiments on the MSTAR data set validate the advantages of the proposed method.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2437
Author(s):  
Ilias Papastratis ◽  
Kosmas Dimitropoulos ◽  
Petros Daras

Continuous sign language recognition is a weakly supervised task dealing with the identification of continuous sign gestures from video sequences, without any prior knowledge about the temporal boundaries between consecutive signs. Most of the existing methods focus mainly on the extraction of spatio-temporal visual features without exploiting text or contextual information to further improve the recognition accuracy. Moreover, the ability of deep generative models to effectively model data distribution has not been investigated yet in the field of sign language recognition. To this end, a novel approach for context-aware continuous sign language recognition using a generative adversarial network architecture, named as Sign Language Recognition Generative Adversarial Network (SLRGAN), is introduced. The proposed network architecture consists of a generator that recognizes sign language glosses by extracting spatial and temporal features from video sequences, as well as a discriminator that evaluates the quality of the generator’s predictions by modeling text information at the sentence and gloss levels. The paper also investigates the importance of contextual information on sign language conversations for both Deaf-to-Deaf and Deaf-to-hearing communication. Contextual information, in the form of hidden states extracted from the previous sentence, is fed into the bidirectional long short-term memory module of the generator to improve the recognition accuracy of the network. At the final stage, sign language translation is performed by a transformer network, which converts sign language glosses to natural language text. Our proposed method achieved word error rates of 23.4%, 2.1%, and 2.26% on the RWTH-Phoenix-Weather-2014 and the Chinese Sign Language (CSL) and Greek Sign Language (GSL) Signer Independent (SI) datasets, respectively.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Jianghua Nie ◽  
Yongsheng Xiao ◽  
Lizhen Huang ◽  
Feng Lv

Aiming at the problem of radar target recognition of High-Resolution Range Profile (HRRP) under low signal-to-noise ratio conditions, a recognition method based on the Constrained Naive Least-Squares Generative Adversarial Network (CN-LSGAN), Short-time Fourier Transform (STFT), and Convolutional Neural Network (CNN) is proposed. Combining the Least-Squares Generative Adversarial Network (LSGAN) with the Wasserstein Generative Adversarial Network with Gradient Penalty (WGAN-GP), the CN-LSGAN is presented and applied to the HRRP denoise. The frequency domain and phase features of HRRP are gained by STFT in order to facilitate feature learning and also match the input data format of the CNN. These experimental results show that the CN-LSGAN has better data augmentation performance and can effectively avoid the model collapse compared to the generative adversarial network (GAN) and LSGAN. Also, the method has better recognition performance than the one-dimensional CNN method and the Long Short-Term Memory (LSTM) network method.


Sign in / Sign up

Export Citation Format

Share Document