Identification of Conversational Intent Pattern Using Pattern-Growth Technique for Academic Chatbot

Author(s):  
Suraya Alias ◽  
Mohd Shamrie Sainin ◽  
Tan Soo Fun ◽  
Norhayati Daut
2020 ◽  
Author(s):  
Keishiro Yamashita ◽  
Kazuki Komatsu ◽  
Hiroyuki Kagi

An crystal-growth technique for single crystal x-ray structure analysis of high-pressure forms of hydrogen-bonded crystals is proposed. We used alcohol mixture (methanol: ethanol = 4:1 in volumetric ratio), which is a widely used pressure transmitting medium, inhibiting the nucleation and growth of unwanted crystals. In this paper, two kinds of single crystals which have not been obtained using a conventional experimental technique were obtained using this technique: ice VI at 1.99 GPa and MgCl<sub>2</sub>·7H<sub>2</sub>O at 2.50 GPa at room temperature. Here we first report the crystal structure of MgCl2·7H2O. This technique simultaneously meets the requirement of hydrostaticity for high-pressure experiments and has feasibility for further in-situ measurements.


2015 ◽  
Vol 32 (4) ◽  
pp. 350
Author(s):  
Dongyang Wang ◽  
Wei He ◽  
Ling Li ◽  
Jianpang Zhai

Crystals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 89 ◽  
Author(s):  
Jolanta Prywer ◽  
Lesław Sieroń ◽  
Agnieszka Czylkowska

In this article, we report the crystallization of struvite in sodium metasilicate gel by single diffusion gel growth technique. The obtained crystals have a very rich morphology displaying 18 faces. In this study, the habit and morphology of the obtained struvite crystals are analyzed. The crystals were examined and identified as pure struvite by single X-ray diffraction (XRD). The orthorhombic polar noncentrosymmetric space group Pmn21 was identified. The structure of the crystal was determined at a temperature of 90 K. Our research indicates a lack of polymorphism, resulting from the temperature lowering to 90 K, which has not been previously reported. The determined unit cell parameters are as follows a = 6.9650(2) Å, b = 6.1165(2) Å, c = 11.2056(3) Å. The structure of struvite is presented here with a residual factor R1 = 1.2% at 0.80 Å resolution. We also present thermoanalytical study of struvite using thermal analysis techniques such as thermogravimetry (TG), derivative thermogravimetry (DTG) and differential thermal analysis (DTA).


2021 ◽  
pp. 126199
Author(s):  
Jorge-Enrique Rueda-P ◽  
J.E.F.S. Rodrigues ◽  
Antonio Carlos Hernandes

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jolanta Prywer ◽  
Rafał Kruszyński ◽  
Marcin Świątkowski ◽  
Andrzej Soszyński ◽  
Dariusz Kajewski ◽  
...  

AbstractIn this paper, we present the first experimental evidence of the piezoelectric nature of struvite (MgNH4PO4·6H2O). Using a single diffusion gel growth technique, we have grown struvite crystals in the form of plane parallel plates. For struvite crystals of this shape, we measured the piezoelectric coefficients d33 and d32. We have found that at room temperature the value of piezoelectric coefficient d33 is 3.5 pm/V, while that of d32 is 4.7 pm/V. These values are comparable with the values for other minerals. Struvite shows stable piezoelectric properties up to the temperature slightly above 350 K, for the heating rate of 0.4 K/min. For this heating rate, and above this temperature, the thermal decomposition of struvite begins, which, consequently, leads to its transformation into dittmarite with the same non-centrosymmetric symmetry as in case of struvite. The struvite-dittmarite transformation temperature is dependent on the heating rate. The higher the heating rate, the higher the temperature of this transformation. We have also shown that dittmarite, like struvite exhibits piezoelectric properties.


Author(s):  
Yoon Kyeung Lee ◽  
Chanyoung Yoo ◽  
Woohyun Kim ◽  
Jeongwoo Jeon ◽  
Cheol Seong Hwang

Atomic layer deposition (ALD) is a thin film growth technique that uses self-limiting, sequential reactions localized at the growing film surface. It guarantees exceptional conformality on high-aspect-ratio structures and controllability...


Sign in / Sign up

Export Citation Format

Share Document