scholarly journals Struvite Grown in Gel, Its Crystal Structure at 90 K and Thermoanalytical Study

Crystals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 89 ◽  
Author(s):  
Jolanta Prywer ◽  
Lesław Sieroń ◽  
Agnieszka Czylkowska

In this article, we report the crystallization of struvite in sodium metasilicate gel by single diffusion gel growth technique. The obtained crystals have a very rich morphology displaying 18 faces. In this study, the habit and morphology of the obtained struvite crystals are analyzed. The crystals were examined and identified as pure struvite by single X-ray diffraction (XRD). The orthorhombic polar noncentrosymmetric space group Pmn21 was identified. The structure of the crystal was determined at a temperature of 90 K. Our research indicates a lack of polymorphism, resulting from the temperature lowering to 90 K, which has not been previously reported. The determined unit cell parameters are as follows a = 6.9650(2) Å, b = 6.1165(2) Å, c = 11.2056(3) Å. The structure of struvite is presented here with a residual factor R1 = 1.2% at 0.80 Å resolution. We also present thermoanalytical study of struvite using thermal analysis techniques such as thermogravimetry (TG), derivative thermogravimetry (DTG) and differential thermal analysis (DTA).

1990 ◽  
Vol 201 ◽  
Author(s):  
W. G. Fahrenholtz ◽  
S. R. Foltyn ◽  
K. C. Ott ◽  
M. Chadwick ◽  
D. M. Smith

AbstractA pulsed excimer laser was used to ablate aluminum metal into an oxygen-containing atmosphere. The resulting fine powder was collected on a 0.1 μm filter and analyzed to determine structure and composition. Using a combination of TEM, EELS, and thermal analysis techniques, the product was found to be amorphous aluminum oxide, Al2O3. The morphology of the powders was investigated using SEM, TEM, and surface area measurements. The resulting powder was crystallized and examined by x-ray diffraction.


1995 ◽  
Vol 398 ◽  
Author(s):  
A. Tomasi ◽  
E. Galvanetto ◽  
F.C. Matacotta ◽  
P. Nozar ◽  
P. Scardi ◽  
...  

ABSTRACTA systematic study on phase formation and stabilisation in the Ba-Cu-C-O system in the temperature range 20-500°C, under various atmospheres, by traditional thermal analysis techniques, high temperature X-ray diffraction and high resolution electron microscopy, has permitted to identify and characterise the formation kinetics of a new copper containing phase isomorphic to γ-BaCO3.


2021 ◽  
Vol 67 (1 Jan-Feb) ◽  
pp. 18
Author(s):  
G. E. Delgado ◽  
P. Grima-Gallardo ◽  
J. A. Aitken ◽  
A. Cárdenas ◽  
I. Brito

The Cu2FeIn2Se5 alloy, belonging to the system (CuInSe2)1-x(FeSe)x with x= ⅓, was synthesized by the melt and annealing technique. The differential thermal analysis (DTA) indicates that this compound melts at 1017 K. The crystal structure of this new quaternary compound was established using powder X-ray diffraction. Cation distribution analysis indicates that this material crystallizes in a P-chalcopyrite structure, space group P2c (Nº 112), with unit cell parameters a = 6.1852(2) Å, c = 12.3633(9) Å, V = 472.98(4) Å3. Cu2FeIn2Se5 is a new adamantane type compound derivative of the sphalerite structure, and consists of a three-dimensional arrangement of distorted CuSe4, FeSe4, and InSe4 tetrahedral connected by common faces.


2018 ◽  
Vol 83 (02) ◽  
pp. 181-190
Author(s):  
Ian E. Grey ◽  
Erich Keck ◽  
Anthony R. Kampf ◽  
John D. Cashion ◽  
Colin M. MacRae ◽  
...  

AbstractSchmidite, Zn(Fe3+0.5Mn2+0.5)2ZnFe3+(PO4)3(OH)3(H2O)8 and wildenauerite, Zn(Fe3+0.5Mn2+0.5)2Mn2+Fe3+(PO4)3(OH)3(H2O)8 are two new oxidised schoonerite-group minerals from the Hagendorf-Süd pegmatite, Hagendorf, Oberpfalz, Bavaria, Germany. Schmidite occurs as radiating sprays of orange–brown to copper-red laths on and near to altered phosphophyllite in a corroded triphylite nodule, whereas wildenauerite forms dense compacts of red laths, terminating Zn-bearing rockbridgeite. The minerals are biaxial (+) with α = 1.642(2), β = 1.680(1), γ = 1.735(2) and 2Vmeas = 81.4(8)° for schmidite, and with α = 1.659(3), β = 1.687(3), γ = 1.742(3) and 2Vmeas = 73(1)° for wildenauerite. Electron microprobe analyses, with H2O from thermal analysis and FeO/Fe2O3 from Mössbauer spectroscopy, gave FeO 0.4, MgO 0.3, Fe2O3 23.5, MnO 9.0, ZnO 15.5, P2O5 27.6, H2O 23.3, total 99.6 wt.% for schmidite, and FeO 0.7, MgO 0.3, Fe2O3 25.2, MnO 10.7, ZnO 11.5, P2O5 27.2, H2O 24.5, total 100.1 wt.% for wildenauerite. The empirical formulae, scaled to 3 P and with OH– adjusted for charge balance are Zn1.47Mn2+0.98Mg0.05Fe2+0.04Fe3+2.27(PO4)3(OH)2.89(H2O)8.54 for schmidite and Zn1.11Mn2+1.18Mg0.05Fe2+0.08Fe3+2.47(PO4)3(OH)3.25(H2O)9.03 for wildenauerite. The two minerals have orthorhombic symmetry, space group Pmab and Z = 4. The unit-cell parameters from refinement of powder X-ray diffraction data are a = 11.059(1), b = 25.452(1) and c = 6.427(1) Å for schmidite, and a = 11.082(1), b = 25.498(2) and c = 6.436(1) Å for wildenauerite. The crystal structures of schmidite and wildenauerite differ from that of schoonerite in having minor partitioning of Zn from the [5]Zn site to an adjacent vacant tetrahedral site [4]Zn, separated by ~1.0 Å from [5]Zn. The two minerals are distinguished by the cation occupancies in the octahedral M1 to M3 sites. Schmidite has M1 = M2 = (Fe3+0.5Mn2+0.5) and M3 = Zn and wildenauerite has M1 = M2 = (Fe3+0.5Mn2+0.5) and M3 = Mn2+.


2014 ◽  
Vol 29 (4) ◽  
pp. 379-382 ◽  
Author(s):  
Sandra Amaya ◽  
Johana Arboleda ◽  
Adriana Echavarría

A new trimetallic compound with formula (NH4)Ni2.4Co0.6O(OH)(MoO4)2•1.5H2O was obtained by hydrothermal synthesis. The solid was characterized by X-ray diffraction, thermal analysis (thermogravimetric analysis and differential thermal analysis), Fourier-transformed infrared spectroscopy, Laser Raman spectroscopy, and chemical analysis by atomic absorption, confirming the formation of the layered phase ϕy. Crystallographic studies showed that the compound obtained is trigonal with hexagonal unit-cell parameters, a = 6.0468 ± 0.0016 Å and c = 21.8433 ± 0.0001 Å, and space group R-3m.


Crystals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 812
Author(s):  
Noura Othman Alzamil ◽  
Ghareeba Mussad Al-Enzi ◽  
Aishah Hassan Alamri ◽  
Insaf Abdi ◽  
Amor BenAli

Two new nonmetal cation tetrafluoroborate phases [H3tren](BF4)3 (I) and [H3tren](BF4)3 HF (II) were synthesized by microwave-assisted solvothermal and characterized by single crystal X-ray diffraction, IR spectroscopy and thermal analysis DTA-TGA. [H3tren](BF4)3 is cubic (P213) with unit cell parameter a = 11.688(1) Å. [H3tren](BF4)3•HF is trigonal (R3c) with unit cell parameters a = 15.297(6) Å and c = 12.007(2) Å. Both (I) and (II) structures can be described from isolated tetrafluoroborate BF4- anions, triprotonated tris-(2-aminoethyl)amine (tren) [H3tren]3+. Phase (II) contains disordered BF4- tetrahedron and hydrofluoric acid.


2007 ◽  
Vol 60 (2) ◽  
pp. 133 ◽  
Author(s):  
Pamela M. Dean

Suprofen, α-methyl-4-(2-thienylcarbonyl)benzeneacetic acid, a non-steroidal anti-inflammatory drug (NSAID), forms an inclusion complex with β-cyclodextrin of formula (β-cyclodextrin)2·(suprofen)·20H2O 1 and with TRIMEB (a permethylated β-cyclodextrin) of formula (β-cyclodextrin)·(suprofen)·0H2O 2. These species were investigated by thermal analysis techniques (HSM, TGA, DSC), powder X-ray diffraction (PXRD), and single-crystal X-ray diffraction at 173 K. Thermal analysis of 1 revealed dehydration followed by decomposition at 311.0°C, and only melting at 161.0°C for 2. The host-to-drug stoichiometric ratio was determined by UV spectrophotometry, and found to be 2:1 for 1 and 1:1 for 2. Single-crystal X-ray methods revealed that 1 crystallizes in the orthorhombic space group C2221, with a 19.0409(1), b 24.1949(2), c 32.4707(2) Å, and Z 4 formula units. Complex 2 crystallizes in the orthorhombic space group P212121, with a 15.389(1), b 21.051(1), c 27.027(2) Å, and Z 4 formula units. The (S)-enantiomer of suprofen was preferentially included in both characterized crystals.


2011 ◽  
Vol 7 (3) ◽  
pp. 1399-1412
Author(s):  
I. Bechibani ◽  
H. Litaiem ◽  
S. Garcia Granda ◽  
M. Dammak ◽  
L. Ktari

The Tl2HAsO4.Te(OH)6 (TlAsTe) compound crystallizes in the triclinic system P1 with unit cell parameters: a= 7.100(10) Å, b= 7.281(13) Å, c= 8.383(11) Å, α= 76.91(1)°, β= 87.16(1)°, γ= 66.96(2)°, Z= 2 and V= 388.19(1) Å3. This new structure can be described as a lamellar one with the atomic arrangement being built by planes of Te(OH)6 octahedra alterning with planes of arsenate tetrahedra. Raman and infrared spectra recorded at room temperature confirm the presence of As  and Te  groups and characterize the hydrogen bonds present in the crystal lattice. Differential scanning calorimerty shows the presence of three-phase transitions at 396 K, 408 K and 430 K present in the title compound. Typical thermal analyses, such as differential thermal analysis and thermogravimetry show that the decomposition of this material starts at about T= 445 K. Magnetization curve of Tl2HAsO4·Te(OH)6 substance have revealed a diamagnetic response overall temperature range studied.


2015 ◽  
Vol 12 (1) ◽  
pp. 22-27 ◽  
Author(s):  
M Iyanar ◽  
J Prakash ◽  
C Muthamizhchelvan ◽  
S Ekadevasena ◽  
J. Martin Gnanaraj ◽  
...  

The present work is a comparative analysis of the properties of undoped and L-Proline doped ADP crystals. Slow evaporation solution growth technique was employed for growing undoped and L-Proline doped ADP crystals. The unit cell parameters were estimated by single crystal X-Ray diffraction analysis. The crystalline nature of the samples was revealed by Powder X-Ray diffraction analysis. The presence of functional groups and the spectral properties was identified by FTIR spectral analysis. The optical property of the material was examined by UV-Visible spectral analysis. The surface morphology and the elemental composition of the material was studied by SEM and EDS analysis. The nonlinear optical property of the samples was tested by Kurtz and Perry experimental setup.


2013 ◽  
Vol 344 ◽  
pp. 37-41 ◽  
Author(s):  
H. Boularas ◽  
M.Y. Debili

Structural characteristics and thermal behavior of the conventionally solidified Al80Cu14Fe6, was investigated by X-ray diffraction, optical microscopy, and differential thermal analysis techniques. It was found that the formation of quasi crystalline phase occurs after annealing for relatively low temperature (500°C) during a short time.


Sign in / Sign up

Export Citation Format

Share Document