The Impact of Recycled Plastic Waste in Morocco on Bitumen Physical and Rheological Properties

Author(s):  
Nacer Akkouri ◽  
Khadija Baba ◽  
Sana Simou ◽  
Nassereddin Alanssari ◽  
Abderrahman Nounah
Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1085
Author(s):  
Williams Leiva ◽  
Norman Toro ◽  
Pedro Robles ◽  
Edelmira Gálvez ◽  
Ricardo Ivan Jeldres

This research aims to analyze the impact of sodium tripolyphosphate (STPP) as a rheological modifier of concentrated kaolin slurries in seawater at pH 8, which is characteristic of copper sulfide processing operations. The dispersion phenomenon was analyzed through chord length measurements using the focused beam reflectance measurement (FBRM) technique, complementing size distributions in unweighted and square-weighted modes. The reduction of the rheological properties was significant, decreasing from 231 Pa in a reagent-free environment to 80 Pa after the application of STPP. A frequency sweep in a linear viscoelastic regime indicated that by applying a characteristic dosage of 0.53 kg/t of STPP, the pulp before yielding increases its phase angle, which increases its liquid-like character. Measurements of the chord length verified the dispersion of particles, which showed an apparent increase in the proportion of fine particles and a reduction of the coarser aggregates when STPP was applied. Measurements of the zeta potential suggested that the high anionic charge of the reagent (pentavalent) increases the electrostatic repulsions between particles, overcoming the effect of cations in seawater. The results are relevant for the mining industry, especially when the deposits have high contents of complex gangues, such as clays, that increase the rheological properties. This increases the energy costs and water consumption needed for pumping the tailings from thickeners to the tailing storages facilities. The strategies that allow for the improvement of the fluidity and deformation of the tailings generate slack in order to maximize water recovery in the thickening stages.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1007
Author(s):  
Chun-Hung Moy ◽  
Lian-See Tan ◽  
Noor Fazliani Shoparwe ◽  
Azmi Mohd Shariff ◽  
Jully Tan

Plastics are used for various applications, including in the food and beverage industry, for the manufacturing of plastic utensils and straws. The higher utilization of plastic straws has indirectly resulted in the significant disposal of plastic waste, which has become a serious environmental issue. Alternatively, bio-plastic and paper straws have been introduced to reduce plastic waste. However, limited studies are available on the environmental assessment of drinking straws. Life cycle assessment (LCA) studies for bio-plastic and paper straws have not been comprehensively performed previously. Therefore, the impact of both bio-plastic and paper straws on the environment are quantified and compared in this study. Parameters, such as the global warming potential (GWP), acidification potential (AP) and eutrophication potential (EP), were evaluated. The input–output data of the bio-plastic and paper straws processes from a gate-to-grave analysis were obtained from the literature and generated using the SuperPro Designer V9 process simulator. The results show that bio-plastic straws, which are also known as polylactic acid (PLA) straws, had reduced environmental impacts compared to paper straws. The outcomes of this work provide an insight into the application of bio-plastic and paper straws in effectively reducing the impact on the environment and in promoting sustainability, especially from the perspective of Malaysia.


2018 ◽  
Vol 234 ◽  
pp. 04004 ◽  
Author(s):  
Alexey Lobiak ◽  
Andrii Plugin ◽  
Larisa Kravtsiv ◽  
Oksana Kovalova

The paper presents a computer modelling technique for modernization of bridgework operations by building-up a mounted reinforced concrete slab. It implements the technique of the evolutionary transformation of a model in one calculation cycle with redistribution of forces between the elements of the built-up section, and consideration of the impact of elastoplastic and rheological properties of the materials. Consideration of the concrete creep implies the application of the generalized kinetic curve of prolonged deformation and phenomenological deformation development equations based on the colloid-chemical concept of the prolonged concrete deformation mechanism. The creep control was implemented through new structural coefficients which determined the structure of matrix interlayers between the sand grains, and mortar between the crushed stone grains. The technique proposed was realized in the program complex “LIRA-SAPR” based on the building information modelling (BIM) and the finite element method (FEM). The multistage modelling technique was shown by an example of calculation of a motorway bridge slab span within the transport structures under modernization along the Lev Landau Avenue in Kharkiv (Ukraine).


2019 ◽  
Vol 24 (2) ◽  
pp. 166
Author(s):  
Kusdiyono Kusdiyono ◽  
Supriyadi Supriyadi ◽  
Tedjo Mulyono ◽  
Sukoyo Sukoyo

At present, plastic is a material that is needed by the community at large, where the impact is also very extraordinary after the plastic is used in everyday life which can cause serious problems if the management is not done properly. The problem of plastic waste does not only occur in the city of Semarang, but also in other cities, so that the Ministry of Environment and Forestry has implemented a paid plastic bag program in the short term. But this is only to deal with problems in the short term. In the long run, it will not solve the problem of "plastic waste", because the policy actually encourages people to buy plastic which, of course, will add a new burden for the community to buy it. Based on the above problems, it is necessary to utilize this plastic waste to be made into road pavement materials such as in the manufacture of Asphal Concrette Wearing Course, by making 5 mixed variations ranging from (2 to 10)% of the weight of the aggregate . This research was initiated through a survey process, material procurement, testing of stacking materials, making test specimens, testing specimens. The results of the research can show that the type of Thermosetting plastic waste has a significant influence on the Asphalt Concrete mixture AC-WC heat mixture, including: Density, Marshall Stability, Flow, VIM, VMA, MQ and the remaining Marshall Stability tend to show an increase, moderate VFA and VIMrefusal Density values tend to show a decrease. Thus the plastic waste from the Thermosetting type can be used as a partial replacement of the aggregate for the Asphalt Concrete mixture AC-WC heat mixture with a plastic waste content is limited to a maximum of 10% and at an optimum asphalt content of 5.55%. Thus this research is expected to be of benefit to the industry and the people of Semarang in relation to the use of plastic waste for road pavement.


2021 ◽  
Vol 1 (2) ◽  
Author(s):  
Osei H

High demand for oil and gas has led to exploration of more petroleum resources even at remote areas. The petroleum resources are found in deeper subsurface formations and drilling into such formations requires a well-designed drilling mud with suitable rheological properties in order to avoid or reduce associated drilling problems. This is because rheological properties of drilling muds have considerable effect on the drilling operation and cleaning of the wellbore. Mud engineers therefore use mud additives to influence the properties and functions of the drilling fluid to obtain the desired drilling mud properties especially rheological properties. This study investigated and compared the impact of barite and hematite as weighting agents for water-based drilling muds and their influence on the rheology. Water-based muds of different concentrations of weighting agents (5%, 10%, 15% and 20% of the total weight of the drilling mud) were prepared and their rheological properties determined at an ambient temperature of 24ᵒC to check their impact on drilling operation. The results found hematite to produce higher mud density, plastic viscosity, gel strength and yield point when compared to barite at the same weighting concentrations. The higher performance of the hematite-based muds might be attributed to it having higher specific gravity, better particle distribution and lower particle attrition rate and more importantly being free from contaminants. The water-based muds with hematite will therefore be more promising drilling muds with higher drilling and hole cleaning efficiency than those having barite.


2018 ◽  
Vol 32 (5) ◽  
pp. 710-726 ◽  
Author(s):  
Li Dang ◽  
Xueying Nai ◽  
Xin Liu ◽  
Zhihui Lv ◽  
Wu Li

Polypropylene (PP) composites containing magnesium oxysulfate particle (MOSp), magnesium oxysulfate whisker (MOSw), or magnesium oxysulfate sector (MOSs) were prepared via melt blending method. Scanning electron microscopy results showed that three magnesium oxysulfate (MOS) fillers all dispersed homogeneously in PP matrix and displayed vague and fuzzy interfaces. Wide-angle X-ray diffraction (WXRD) patterns showed that MOSp induced the most amount of β-PP, which was supported by polarized light microscopy (PLM) photographs. Moreover, PLM photographs also showed that the presence of MOSp, MOSw, or MOSw decreased the PP spherulites, especially for MOSp. As such, mechanical tests showed that incorporation of MOSp into PP matrix greatly improved the impact strength and least lowered the nominal strain at break. The yield strength and Young’s modulus of composites were greatly enhanced with MOSw. Two possible reasons for this phenomenon are rigidity of MOSw and microstructure of composites. Rheological properties were measured via small amplitude oscillatory shear. The results showed that PP melts containing MOSw exhibited significant yield stress and “shear-thinning” behaviors, which indicated the formation of MOSw network and the transition from “liquid-like” PP matrix to “solid-like” composites. The rheological results greatly proved the enhancement in tensile properties of MOSw-incorporated composites.


2020 ◽  
Vol 49 (1) ◽  
pp. 107-133 ◽  
Author(s):  
Jeong-Mo Choi ◽  
Alex S. Holehouse ◽  
Rohit V. Pappu

Many biomolecular condensates appear to form via spontaneous or driven processes that have the hallmarks of intracellular phase transitions. This suggests that a common underlying physical framework might govern the formation of functionally and compositionally unrelated biomolecular condensates. In this review, we summarize recent work that leverages a stickers-and-spacers framework adapted from the field of associative polymers for understanding how multivalent protein and RNA molecules drive phase transitions that give rise to biomolecular condensates. We discuss how the valence of stickers impacts the driving forces for condensate formation and elaborate on how stickers can be distinguished from spacers in different contexts. We touch on the impact of sticker- and spacer-mediated interactions on the rheological properties of condensates and show how the model can be mapped to known drivers of different types of biomolecular condensates.


2019 ◽  
Author(s):  
Abo Taleb T. Al-Hameedi ◽  
Husam H. Alkinani ◽  
Shari Dunn-Norman ◽  
Ralph E. Flori ◽  
Mortadha T. Alsaba ◽  
...  

2019 ◽  
Author(s):  
Abo Taleb T. Al-Hameedi ◽  
Husam H. Alkinani ◽  
Shari Dunn-Norman ◽  
Ralph E. Flori ◽  
Mortadha T. Alsaba ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document