Influence of Liquid Jet Stirring and In-Situ Homogenization on the Intermetallics Formation During DC Casting of a 6xxx Al Alloy Rolling Ingot

Author(s):  
S. Kumar ◽  
J. Cracroft ◽  
R. B. Wagstaff
Keyword(s):  
Al Alloy ◽  
Author(s):  
D.I. Potter ◽  
A. Taylor

Thermal aging of Ni-12.8 at. % A1 and Ni-12.7 at. % Si produces spatially homogeneous dispersions of cuboidal γ'-Ni3Al or Ni3Si precipitate particles arrayed in the Ni solid solution. We have used 3.5-MeV 58Ni+ ion irradiation to examine the effect of irradiation during precipitation on precipitate morphology and distribution. The nearness of free surfaces produced unusual morphologies in foils thinned prior to irradiation. These thin-foil effects will be important during in-situ investigations of precipitation in the HVEM. The thin foil results can be interpreted in terms of observations from bulk irradiations which are described first.Figure 1a is a dark field image of the γ' precipitate 5000 Å beneath the surface(∿1200 Å short of peak damage) of the Ni-Al alloy irradiated in bulk form. The inhomogeneous spatial distribution of γ' results from the presence of voids and dislocation loops which can be seen in the bright field image of the same area, Fig. 1b.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1767
Author(s):  
Yuhong Jiao ◽  
Jianfeng Zhu ◽  
Xuelin Li ◽  
Chunjie Shi ◽  
Bo Lu ◽  
...  

Al matrix composite, reinforced with the in situ synthesized 3C–SiC, MgAl2O4, and MgO grains, was produced via the casting process using phenolic resin pyrolysis products in flash mode. The contents and microstructure of the composites’ fracture characteristics were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Mechanical properties were tested by universal testing machine. Owing to the strong propulsion formed in turbulent flow in the pyrolysis process, nano-ceramic grains were formed in the resin pyrolysis process and simultaneously were homogeneously scattered in the alloy matrix. Thermodynamic calculation supported that the gas products, as carbon and oxygen sources, had a different chemical activity on in situ growth. In addition, ceramic (3C–SiC, MgAl2O4, and MgO) grains have discrepant contents. Resin pyrolysis in the molten alloy decreased oxide slag but increased pores in the alloy matrix. Tensile strength (142.6 ± 3.5 MPa) had no change due to the cooperative action of increased pores and fine grains; the bending and compression strength was increasing under increased contents of ceramic grains; the maximum bending strength was 378.2 MPa in 1.5% resin-added samples; and the maximum compression strength was 299.4 MPa. Lath-shaped Si was the primary effect factor of mechanical properties. The failure mechanism was controlled by transcrystalline rupture mechanism. We explain that the effects of the ceramic grains formed in the hot process at the condition of the resin exist in mold or other accessory materials. Meanwhile, a novel ceramic-reinforced Al matrix was provided. The organic gas was an excellent source of carbon, nitrogen, and oxygen to in situ ceramic grains in Al alloy.


2009 ◽  
Vol 79-82 ◽  
pp. 1415-1418 ◽  
Author(s):  
Shu Qing Yan ◽  
Jing Pei Xie ◽  
Wen Yan Wang ◽  
Ji Wen Li

In this study, some low-titanium aluminum alloys produced by electrolysis were prepared and the effect of various titanium contents on microstructure and tensile property of Zn-Al alloy was investigated. The test results showed that addition of titanium by electrolysis is an effective way to refine the grain size of Zn-Al alloy. As the titanium content is 0.04 wt%, the grain size becomes to be a minimum value and the tensile property of the alloy reaches to the maximum. Electrolysis showed that titanium atoms are to be some inherent particles in low-titanium aluminum alloy. These titanium atoms enter into the aluminum melt liquid and spread to the whole melt rapidly under stirring action of electromagnetic field of the electric current. The heterogeneous phase nuclei are high melting TiC and TiAl3 particles formed from in-situ precipitating trace C and Ti during cooling process. These in-situ precipitating heterogeneous nucleation sites with small dimension, high dispersity, cleaning interface and fine soakage with melt, have better capacity of heterogeneous nucleation than of exotic particles. It may inhibit grain growth faster and more effective in pinning dislocations, grain boundaries or sub-boundaries.


2015 ◽  
Vol 30 (3) ◽  
pp. 356-366 ◽  
Author(s):  
Santosh Kumar ◽  
Prosenjit Das ◽  
Sandeep K. Tiwari ◽  
Manas K. Mondal ◽  
Supriya Bera ◽  
...  

Author(s):  
Ph. Jarry ◽  
O. Ribaud ◽  
L. Jouët-Pastré ◽  
E. Waz ◽  
P. Delaire ◽  
...  
Keyword(s):  
Al Alloy ◽  

2019 ◽  
Vol 792 ◽  
pp. 240-249 ◽  
Author(s):  
Eli Vandersluis ◽  
Comondore Ravindran ◽  
Dimitry Sediako ◽  
Abdallah Elsayed ◽  
Glenn Byczynski

2018 ◽  
Vol 6 (39) ◽  
pp. 18853-18858 ◽  
Author(s):  
Yang Lu ◽  
Xiao Huang ◽  
Yadong Ruan ◽  
Qingsong Wang ◽  
Rui Kun ◽  
...  

A Li enriched Li–Al alloy will spontaneously react with an LLZTO solid electrolyte, constructing a highly tolerant SEI with low interfacial impedance.


2014 ◽  
Vol 900 ◽  
pp. 141-145 ◽  
Author(s):  
Can Feng Fang ◽  
Guang Xu Liu ◽  
Ling Gang Meng ◽  
Xing Guo Zhang

The effects of in-situ TiB2 particle fabricated from Al-Ti-B system via the self-propagating high-temperature synthesis (SHS) reaction technology on microstructure and mechanical properties of Mg-Sn-Zn-Al alloy were investigated. The results indicate that the size of the Mg2Sn and α-Mg+Mg32(Al,Zn)49 phase becomes coarser with the increasing content of Al-Ti-B preform, meanwhile the amount of eutectic α-Mg+Mg32(Al,Zn)49 phase increases too. The addition of Al-Ti-B is favorable toward promoting the strength of composites, but deteriorates elongation. The resulting as-extruded composite material with 4 wt.% Al-Ti-B preform exhibits good overall mechanical properties with an ultimate tensile strength of 291 MPa and an elongation over 2 %.


Author(s):  
Radha Raman Mishra ◽  
Apurbba Kumar Sharma

In the present study, finite element models of three different applicators (A1, A2, and A3) having different power densities were developed to study melting of the charge and solidification of the melt during in situ microwave casting. Multi-physics simulations were carried out to understand the effect of applicator specific processing conditions on the distribution of electric field inside the cavities at 2.45 GHz for Al 7039 alloy as charge. The alloy was cast inside the selected applicators and the mold temperature was monitored. The experimental results showed reasonable agreement with the simulation data. Simulation results revealed that the distribution of electromagnetic field inside A3 offers the lowest melting time of the charge (141% less than A1); however, it also caused the highest preheating of the graphite mold with respect to A1 (30% higher) and A2 (25% higher). It was found that the applicator-specific solidification conditions affect grain structure, intermetallic precipitation, and their distribution inside the casts. Coarser intermetallic phases (57 µm) and grains (97 ± 54 µm) were present in the Cast 3 developed using A3 due to higher preheating of the mold and slower cooling rate of the melt as compared to that in A1 and A2.


Sign in / Sign up

Export Citation Format

Share Document