2017 ◽  
Vol 43 (2) ◽  
pp. 591 ◽  
Author(s):  
B. Mark ◽  
N. Stansell ◽  
G. Zeballos

The tropical Andes of Peru and Bolivia are important for preserving geomorphic evidence of multiple glaciations, allowing for refinements of chronology to aid in understanding climate dynamics at a key location between hemispheres. This review focuses on the deglaciation from Late-Pleistocene maximum positions near the global Last Glacial Maximum (LGM). We synthesize the results of the most recent published glacial geologic studies from 12 mountain ranges or regions within Peru and Bolivia where glacial moraines and drift are dated with terrestrial cosmogenic nuclides (TCN), as well as maximum and minimum limiting ages based on radiocarbon in proximal sediments. Special consideration is given to document paleoglacier valley localities with topographic information given the strong vertical mass balance sensitivity of tropical glaciers. Specific valley localities show variable and heterogeneous sequences ages and extensions of paleoglaciers, but conform to a generally cogent regional sequence revealed by more continuous lake sedimentary records. There are clear distributions of stratigraphically older and younger moraine ages that we group and discuss chronologically. The timing of the local LGM based on average TCN ages of moraine groups is 25.1 ka, but there are large uncertainties (up to 7 ka) making the relative timing with the global LGM elusive. There are a significant number of post-LGM moraines that date to 18.9 (± 0.5) ka. During the Oldest Dryas (18.0 to 14.6 ka), moraine boulders date to 16.1 (± 1.1) ka, suggesting that glaciers either experienced stillstands or readvances during this interval. The Antarctic Cold Reversal (ACR; 14.6 to 12.6 ka) is another phase of stillstanding or readvancing glaciers with moraine groups dating to 13.7 (± 0.8) ka, followed by retreating ice margins through most of the Younger Dryas (YD; 12.9 to 11.8 ka). During the early Holocene, groups of moraines in multiple valleys date to 11.0 (± 0.4) ka, marking a period when glaciers either readvanced or paused from the overall trend of deglaciation. The pattern of glacial variability during the Late Glacial after ~14.6 ka appears to be more synchronous with periods of cooling in the southern high latitudes, and out-of-phase with the overall deglacial trend in the Northern Hemisphere. While insolation and CO2 forcing likely drove the general pattern of deglaciation in the southern tropical Andes, regional ocean-atmospheric and hypsometric controls must have contributed to the full pattern of glacial variability.


Author(s):  
Todd Albert ◽  
Andrew Klein ◽  
Joni L. Kincaid ◽  
Christian Huggel ◽  
Adina E. Racoviteanu ◽  
...  

2021 ◽  
Author(s):  
Juan P. Sierra ◽  
C. Junquas ◽  
J. C. Espinoza ◽  
H. Segura ◽  
T. Condom ◽  
...  

Abstract Amazonian deforestation has accelerated during the last decade, threatening an ecosystem where almost one third of the regional rainfall is transpired by the local rainforest. Due to the precipitation recycling, the southwestern Amazon, including the Amazon-Andes transition region, is particularly sensitive to forest loss. This study evaluates the impacts of Amazonian deforestation in the hydro-climatic connectivity between the Amazon and the eastern tropical Andes during the austral summer (December-January-February) in terms of hydrological and energetic balances. Using 10-year high-resolution simulations (2001–2011) with the Weather Research and Forecasting Model, we analyze control and deforestation scenario simulations. Regionally, deforestation leads to a reduction in the surface net radiation, evaporation, moisture convergence and precipitation (~ 20%) over the entire Amazon basin. In addition, during this season, deforestation increases the atmospheric subsidence over the southern Amazon and weakens the regional Hadley cell. Atmospheric stability increases over the western Amazon and the tropical Andes inhibiting convection in these areas. Consequently, major deforestation impacts are observed over the hydro-climate of the Amazon-Andes transition region. At local scale, nighttime precipitation decreases in Bolivian valleys (~ 20–30%) due to a strong reduction in the humidity transport from the Amazon plains toward Andes linked to the South American low-level jet. Over these valleys, a weakening of the daytime upslope winds is caused by local deforestation, which reduces the turbulent fluxes at lowlands. These alterations in rainfall and atmospheric circulation could impact the rich Andean ecosystems and its tropical glaciers.


2009 ◽  
Vol 55 (190) ◽  
pp. 292-302 ◽  
Author(s):  
Thomas Mölg ◽  
Nicolas J. Cullen ◽  
Georg Kaser

AbstractBroadband radiation schemes (parameterizations) are commonly used tools in glacier mass-balance modelling, but their performance at high altitude in the tropics has not been evaluated in detail. Here we take advantage of a high-quality 2 year record of global radiation (G ) and incoming longwave radiation (L ↓) measured on Kersten Glacier, Kilimanjaro, East Africa, at 5873 m a.s.l., to optimize parameterizations of G and L ↓. We show that the two radiation terms can be related by an effective cloud-cover fraction neff , so G or L ↓ can be modelled based on neff derived from measured L ↓ or G, respectively. At neff = 1, G is reduced to 35% of clear-sky G, and L ↓ increases by 45–65% (depending on altitude) relative to clear-sky L ↓. Validation for a 1 year dataset of G and L ↓ obtained at 4850 m on Glaciar Artesonraju, Peruvian Andes, yields a satisfactory performance of the radiation scheme. Whether this performance is acceptable for mass-balance studies of tropical glaciers is explored by applying the data from Glaciar Artesonraju to a physically based mass-balance model, which requires, among others, G and L ↓ as forcing variables. Uncertainties in modelled mass balance introduced by the radiation parameterizations do not exceed those that can be caused by errors in the radiation measurements. Hence, this paper provides a tool for inclusion in spatially distributed mass-balance modelling of tropical glaciers and/or extension of radiation data when only G or L ↓ is measured.


2012 ◽  
Vol 58 (207) ◽  
pp. 134-150 ◽  
Author(s):  
Michel Baraer ◽  
Bryan G. Mark ◽  
Jeffrey M. McKenzie ◽  
Thomas Condom ◽  
Jeffrey Bury ◽  
...  

AbstractThe tropical glaciers of the Cordillera Blanca, Peru, are rapidly retreating, resulting in complex impacts on the hydrology of the upper Río Santa watershed. The effect of this retreat on water resources is evaluated by analyzing historical and recent time series of daily discharge at nine measurement points. Using the Mann-Kendall nonparametric statistical test, the significance of trends in three hydrograph parameters was studied. Results are interpreted using synthetic time series generated from a hydrologic model that calculates hydrographs based on glacier retreat sequences. The results suggest that seven of the nine study watersheds have probably crossed a critical transition point, and now exhibit decreasing dry-season discharge. Our results suggest also that once the glaciers completely melt, annual discharge will be lower than present by 2-30% depending on the watershed. The retreat influence on discharge will be more pronounced during the dry season than at other periods of the year. At La Balsa, which measures discharge from the upper Río Santa, the glacier retreat could lead to a decrease in dry-season average discharge of 30%.


2000 ◽  
Vol 54 (1) ◽  
pp. 24-37 ◽  
Author(s):  
Kenneth H. Orvis ◽  
Sally P. Horn

Glacial lake sediments and glacial geomorphology in Valle de las Morrenas, a glacial trough on the north face of Cerro Chirripó, Costa Rica, provide evidence on high-altitude Pleistocene conditions in Central America. The most recent glacier in the valley (Chirripó stage I) receded very rapidly near the end of the Younger Dryas chronozone. Radiocarbon dates on basal organic sediments from lakes beneath upper, middle, and lower limits of that glacier fall close together, and two-sigma calibrated ages overlap for the period 9700–9600 cal yr B.P. Earliest datable transition sediments from the central lake date to 12,360–11,230 cal yr B.P. Larger, older moraines, and associated trimlines, allowed reconstruction of three paleoglaciers (Chirripó stages II, III, and IV). Computer analysis of hypsometry using published tropical-glacier vertical mass balance profiles yields ELAs of 3506–3523, 3515–3537, and 3418–3509 m, respectively; Chirripó II ELA-estimate positions applied to Chirripó I yield an ELA of 3538–3546 m. We infer minimal temperature depressions of 7.4–8.0°C for the Chirripó I–IV stages. Modeling the behavior of modern tropical glaciers yields basinwide net accumulation estimates of 440–620, 550–830, and 960–1760 mm yr−1 for the Chirripó II, III, and IV stages.


The Holocene ◽  
2003 ◽  
Vol 13 (4) ◽  
pp. 624-624
Author(s):  
Roger J. Braithwaite
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document