scholarly journals The last deglaciation of Peru and Bolivia

2017 ◽  
Vol 43 (2) ◽  
pp. 591 ◽  
Author(s):  
B. Mark ◽  
N. Stansell ◽  
G. Zeballos

The tropical Andes of Peru and Bolivia are important for preserving geomorphic evidence of multiple glaciations, allowing for refinements of chronology to aid in understanding climate dynamics at a key location between hemispheres. This review focuses on the deglaciation from Late-Pleistocene maximum positions near the global Last Glacial Maximum (LGM). We synthesize the results of the most recent published glacial geologic studies from 12 mountain ranges or regions within Peru and Bolivia where glacial moraines and drift are dated with terrestrial cosmogenic nuclides (TCN), as well as maximum and minimum limiting ages based on radiocarbon in proximal sediments. Special consideration is given to document paleoglacier valley localities with topographic information given the strong vertical mass balance sensitivity of tropical glaciers. Specific valley localities show variable and heterogeneous sequences ages and extensions of paleoglaciers, but conform to a generally cogent regional sequence revealed by more continuous lake sedimentary records. There are clear distributions of stratigraphically older and younger moraine ages that we group and discuss chronologically. The timing of the local LGM based on average TCN ages of moraine groups is 25.1 ka, but there are large uncertainties (up to 7 ka) making the relative timing with the global LGM elusive. There are a significant number of post-LGM moraines that date to 18.9 (± 0.5) ka. During the Oldest Dryas (18.0 to 14.6 ka), moraine boulders date to 16.1 (± 1.1) ka, suggesting that glaciers either experienced stillstands or readvances during this interval. The Antarctic Cold Reversal (ACR; 14.6 to 12.6 ka) is another phase of stillstanding or readvancing glaciers with moraine groups dating to 13.7 (± 0.8) ka, followed by retreating ice margins through most of the Younger Dryas (YD; 12.9 to 11.8 ka). During the early Holocene, groups of moraines in multiple valleys date to 11.0 (± 0.4) ka, marking a period when glaciers either readvanced or paused from the overall trend of deglaciation. The pattern of glacial variability during the Late Glacial after ~14.6 ka appears to be more synchronous with periods of cooling in the southern high latitudes, and out-of-phase with the overall deglacial trend in the Northern Hemisphere. While insolation and CO2 forcing likely drove the general pattern of deglaciation in the southern tropical Andes, regional ocean-atmospheric and hypsometric controls must have contributed to the full pattern of glacial variability.

2017 ◽  
Vol 43 (2) ◽  
pp. 629 ◽  
Author(s):  
V. Jomelli ◽  
L. Martin ◽  
P. H. Blard ◽  
V. Favier ◽  
M. Vuillé ◽  
...  

The sensitivity of tropical glaciers to paleoclimatic conditions that prevailed during the Antarctic cold reversal (ACR, ca. 14.5-12.9 ka) has been the subject of a wide debate. In 2014 a paper suggested that tropical glaciers responded very sensitively to the changing climate during the ACR (Jomelli et al., 2014). In this study, we reexamine the conclusions from this study by recalculating previous chronologies based on 226 10Be and 14 3He ages respectively, and using the most up-to date production rates for these cosmogenic nuclides in the Tropical Andes. 53 moraines from 25 glaciers were selected from the previous analysis provided by Jomelli et al. (2014) located in Colombia, Peru and Bolivia. We then focused on two distinct calculations. First we considered the oldest moraine and its uncertainty for every glacier representing the preserved evidence of the maximum glacier extents during the last deglaciation period, and binned the results into 5 distinct periods encompassing the Antarctic cold reversal and Younger Dryas (YD) chronozones: pre-ACR, ACR, ACR-YD, YD and post-YD respectively. Results revealed a predominance of pre-ACR and ACR ages, accounting for 60% of the glaciers. Second we counted the number of moraines per glacier according to the different groups. 21 moraines (40%) of the selected glaciers belong to the pre-ACR-ACR chronozones while 3 moraines only (5%) were dated to the YD and YD-Holocene groups. The rest was assigned to the ACR-YD. These results suggest that moraine records are a very good proxy to document the ACR signal in the Tropical Andes.


2021 ◽  
Author(s):  
Léo Martin ◽  
Pierre-Henri Blard ◽  
Jérôme Lavé ◽  
Vincent Jomelli ◽  
Maarten Lupker ◽  
...  

<p>The climatic reorganizations that occurred in the Southern and Northern hemispheres during the last deglaciation are thought to have affected the continental tropical regions. However, the respective impact of North and Southern climatic changes in the Tropics are still poorly understood. In the Norhtern Tropical Andes, moraines records indicate that the Antarctic Cold Reversal (ACR, 14.3-12.9 ka BP) stage was more represented than the Younger Dryas (12.9-11.7 ka BP) (Jomelli et al., 2014). However, further South, in the Altiplano basin (Bolivia), two cold periods of the North Hemisphere (Heinrich Stadial 1a (16.5-14.5 ka) and Younger Dryas) are synchronous with (i) major advances or stillstands of paleo-glaciers and with (ii) the highstands of the giant palaeo-lakes Tauca and Coipasa (Martin et al., 2018). Therefore, additional geochronological records of paleoglaciers fluctuations are necessary to address the respective impacts of North and South Hemisphere on the glacial dynamics in the region.</p><p>We present new Cosmic Ray Exposure (CRE) ages from glacial landforms of the Bolivian Andes that extend pre-existing datasets for four different sites spreading from 16 to 21°S. We reconstruct the Equilibrium Line Altitudes (ELA) associated with each moraine with the AAR method and use them in an inverse algorithm that combines both the palaeo-glaciers and palaeo-lake budgets to derive temperature and precipitation reconstructions. Our temperature reconstruction (ΔT vs. Present) shows a consistent trend through the four glacial sites with a progressive warming from ΔT= -5°C (17 ka BP) to –2.5°C (15-14.5 ka BP, at the end of the Tauca highstand). This is followed by a return to colder conditions, around -4°C, during the ACR (15.5-12.9 ka BP). The Coipasa highstand is coeval with another warming trend followed by ΔT stabilization at the onset of the Holocene (circa 10 ka BP), around -3°C. Precipitation is mainly characterized by increases during the lake highstands, modulated by the distance from the glacial sites to the center of the paleolakes that are moisture sources (recycling processes).</p><p>These new results highlight the decorrelation of the glacier dynamics to the temperature signal in regions that are characterized by high precipitation variability. They also provide a theoretical frame to explain how both regional and global forcings can imprint the paleo-glacial records. Our results strongly suggest that during the last deglaciation (20 – 10 ka BP), in the Tropical Andes, atmospheric temperatures follow the Antarctic variability, while precipitation is driven by the changes occurring in the Northern Hemisphere.</p><p>References</p><p>Jomelli et al., Nature, 2014; Martin et al., Sc. Advances, 2018</p>


2020 ◽  
Author(s):  
Léo Martin ◽  
Pierre-Henri Blard ◽  
Jérôme Lavé ◽  
Maarten Lupcker ◽  
Julien Charreau ◽  
...  

<p>The paleoclimatic changes that occurred in the Southern and Northern hemispheres during the last deglaciation are thought to have affected the continental tropical regions. However, the respective impact of North and Southern climatic changes in the tropics are still poorly understood. In the High Tropical Andes, the Antarctic Cold Reversal (ACR, 14.3-12.9 ka BP) was reported to be more represented than the Younger Dryas (12.9-11.7 ka BP) among morainic records. However, in the Altiplano basin (Bolivia), two cold periods of the North Hemisphere (Heinrich Stadial 1a (16.5-14.5 ka) and Younger Dryas) are synchronous with (i) major advances or stillstands of paleo-glaciers and with (ii) the highstands of the giant palaeo-lakes Tauca and Coipasa. Therefore, additional results are needed to disentangle between potential North and South Hemisphere climatic influence on the glacial dynamics in the region.</p><p>We present new Cosmic Ray Exposure (CRE) ages from glacial landforms of the Bolivian Andes that extend pre-existing datasets for four different sites spreading from 16 to 21°S. We reconstruct the Equilibrium Line Altitudes (ELA) associated with each moraine with the AAR method and use them in an inverse algorithm that combines both the palaeo-glaciers and palaeo-lake budgets to derive temperature and precipitation reconstructions. Our temperature reconstruction (ΔT vs. Present) shows a consistent trend through the four glacial sites with a progressive warming from ΔT= -5°C (17 ka BP) to –2.5°C (15-14.5 ka BP, at the end of the Tauca highstand). This is followed by a return to colder conditions, around -4°C, during the ACR (15.5-12.9 ka BP). The Coipasa highstand is coeval with another warming trend followed by ΔT stabilization at the onset of the Holocene (circa 10 ka BP), around -3°C. Precipitation is mainly characterized by increases during the lake highstands, modulated by the distance from the glacial sites to the center of the paleolakes that are moisture sources (recycling processes).</p><p>These new results highlight the decorrelation of the glacier dynamics to the temperature signal in regions that are characterized by high precipitation variability. They also provide a theoretical frame to explain how both regional and global forcings can imprint the paleo-glacial records. Our results strongly suggest that during the last deglaciation (20 – 10 ka BP), in the Tropical Andes, atmospheric temperatures follow the Antarctic variability, while precipitation is driven by the changes occurring in the Northern Hemisphere.</p>


2017 ◽  
Vol 88 (3) ◽  
pp. 458-471 ◽  
Author(s):  
Franziska A. Lechleitner ◽  
Sebastian F.M. Breitenbach ◽  
Hai Cheng ◽  
Birgit Plessen ◽  
Kira Rehfeld ◽  
...  

AbstractNortheastern (NE) India experiences extraordinarily pronounced seasonal climate, governed by the Indian summer monsoon (ISM). The vulnerability of this region to floods and droughts calls for detailed and highly resolved paleoclimate reconstructions to assess the recurrence rate and driving factors of ISM changes. We use stable oxygen and carbon isotope ratios (δ18O and δ13C) from stalagmite MAW-6 from Mawmluh Cave to infer climate and environmental conditions in NE India over the last deglaciation (16–6ka). We interpret stalagmite δ18O as reflecting ISM strength, whereas δ13C appears to be driven by local hydroclimate conditions. Pronounced shifts in ISM strength over the deglaciation are apparent from the δ18O record, similarly to other records from monsoonal Asia. The ISM is weaker during the late glacial (LG) period and the Younger Dryas, and stronger during the Bølling-Allerød and Holocene. Local conditions inferred from the δ13C record appear to have changed less substantially over time, possibly related to the masking effect of changing precipitation seasonality. Time series analysis of the δ18O record reveals more chaotic conditions during the late glacial and higher predictability during the Holocene, likely related to the strengthening of the seasonal recurrence of the ISM with the onset of the Holocene.


1969 ◽  
Vol 28 ◽  
pp. 21-24 ◽  
Author(s):  
Carina Bendixen ◽  
Jørn Bo Jensen ◽  
Ole Bennike ◽  
Lars Ole Boldreel

The Kattegat region is located in the wrench zone between the Fennoscandian shield and the Danish Basin that has repeatedly been tectonically active. The latest ice advances during the Quaternary in the southern part of Kattegat were from the north-east, east and south-east (Larsen et al. 2009). The last deglaciation took place at c. 18 to 17 ka BP (Lagerlund & Houmark-Nielsen 1993; Houmark-Nielsen et al. 2012) and was followed by inundation of the sea that formed a palaeo-Kattegat (Conradsen 1995) with a sea level that was relatively high because of glacio-isostatic depression. Around 17 ka BP, the ice margin retreated to the Øresund region and meltwater from the retreating ice drained into Kattegat. Over the next millennia, the region was characterised by regression because the isostatic rebound of the crust surpassed the ongoing eustatic sea-level rise, and a regional lowstand followed at the late glacial to Holocene transition (Mörner 1969; Thiede 1987; Lagerlund & Houmark-Nielsen 1993; Jensen et al. 2002a, b).


2011 ◽  
Vol 7 (2) ◽  
pp. 671-683 ◽  
Author(s):  
J. B. Pedro ◽  
T. D. van Ommen ◽  
S. O. Rasmussen ◽  
V. I. Morgan ◽  
J. Chappellaz ◽  
...  

Abstract. Precise information on the relative timing of north-south climate variations is a key to resolving questions concerning the mechanisms that force and couple climate changes between the hemispheres. We present a new composite record made from five well-resolved Antarctic ice core records that robustly represents the timing of regional Antarctic climate change during the last deglaciation. Using fast variations in global methane gas concentrations as time markers, the Antarctic composite is directly compared to Greenland ice core records, allowing a detailed mapping of the inter-hemispheric sequence of climate changes. Consistent with prior studies the synchronized records show that warming (and cooling) trends in Antarctica closely match cold (and warm) periods in Greenland on millennial timescales. For the first time, we also identify a sub-millennial component to the inter-hemispheric coupling. Within the Antarctic Cold Reversal the strongest Antarctic cooling occurs during the pronounced northern warmth of the Bølling. Warming then resumes in Antarctica, potentially as early as the Intra-Allerød Cold Period, but with dating uncertainty that could place it as late as the onset of the Younger Dryas stadial. There is little-to-no time lag between climate transitions in Greenland and opposing changes in Antarctica. Our results lend support to fast acting inter-hemispheric coupling mechanisms, including recently proposed bipolar atmospheric teleconnections and/or rapid bipolar ocean teleconnections.


2021 ◽  
Author(s):  
Nathaelle Bouttes ◽  
Didier Roche ◽  
Fanny Lhardy ◽  
Aurelien Quiquet ◽  
Didier Paillard ◽  
...  

<p>The last deglaciation is a time of large climate transition from a cold Last Glacial Maximum at 21,000 years BP with extensive ice sheets, to the warmer Holocene 9,000 years BP onwards with reduced ice sheets. Despite more and more proxy data documenting this transition, the evolution of climate is not fully understood and difficult to simulate. The PMIP4 protocol (Ivanovic et al., 2016) has indicated which boundary conditions to use in model simulations during this transition. The common boundary conditions should enable consistent multi model and model-data comparisons. While the greenhouse gas concentration evolution and orbital forcing are well known and easy to prescribe, the evolution of ice sheets is less well constrained and several choices can be made by modelling groups. First, two ice sheet reconstructions are available: ICE-6G (Peltier et al., 2015) and GLAC-1D (Tarasov et al., 2014). On top of topographic changes, it is left to modelling groups to decide whether to account for the associated bathymetry and land-sea mask changes, which is technically more demanding. These choices could potentially lead to differences in the climate evolution, making model comparisons more complicated.</p><p>We use the iLOVECLIM model of intermediate complexity (Goosse et al., 2010) to evaluate the impact of different ice sheet reconstructions and the effect of bathymetry changes on the global climate evolution during the Last deglaciation. We test the two ice sheet reconstructions (ICE-6G and GLAC-1D), and have implemented changes of bathymetry and land-sea mask. In addition, we also evaluate the impact of accounting for the Antarctic ice sheet evolution compared to the Northern ice sheets only.</p><p>We show that despite showing the same long-term changes, the two reconstructions lead to different evolutions. The bathymetry plays a role, although only few changes take place before ~14ka. Finally, the impact of the Antarctic ice sheet is important during the deglaciation and should not be neglected.</p><p>References</p><p>Goosse, H., et al., Description of the Earth system model of intermediate complexity LOVECLIM version 1.2, Geosci. Model Dev., 3, 603–633, https://doi.org/10.5194/gmd-3-603-2010, 2010</p><p>Ivanovic, R. F., et al., Transient climate simulations of the deglaciation 21–9 thousand years before present (version 1) – PMIP4 Core experiment design and boundary conditions, Geosci. Model Dev., 9, 2563–2587, https://doi.org/10.5194/gmd-9-2563-2016, 2016</p><p>Peltier, W. R., Argus, D. F., and Drummond, R., Space geodesy constrains ice age terminal deglaciation: The global ICE-6G_C (VM5a) model, J. Geophys. Res.-Sol. Ea., 120, 450–487, doi:10.1002/2014JB011176, 2015</p><p>Tarasov,L.,  et al., The global GLAC-1c deglaciation chronology, melwater pulse 1-a, and a question of missing ice, IGS Symposium on Contribution of Glaciers and Ice Sheets to Sea-Level Change, 2014</p>


Sign in / Sign up

Export Citation Format

Share Document