Semi-Supervised Machine Learning Algorithm for Predicting Diabetes Using Big Data Analytics

Author(s):  
Senthilkumar Subramaniyan ◽  
R. Regan ◽  
Thiyagarajan Perumal ◽  
K. Venkatachalam
Authorea ◽  
2020 ◽  
Author(s):  
Zvi Segal ◽  
Kira Radinsky ◽  
Guy Elad ◽  
Gal Maor ◽  
Moran Beladiv ◽  
...  

2021 ◽  
Vol 9 (12) ◽  
pp. 1351
Author(s):  
Zhi Yung Tay ◽  
Januwar Hadi ◽  
Favian Chow ◽  
De Jin Loh ◽  
Dimitrios Konovessis

The global greenhouse gas emitted from shipping activities is one of the factors contributing to global warming; thus, there is an urgent need to mitigate the adverse effect of climate change. One of the key strategies is to build a vibrant maritime industry with the use of innovation and digital technologies as well as intelligent systems. The digitization of the shipping industry not only provides a competitive edge to the shipping business model but also enhances ship operational and energy efficiency. This review paper focuses on the big data analytics and machine learning applied to harbour craft vessels with the aim to achieve fuel efficiency. The paper reviews the telemetry system requires for the digitalization of harbour craft vessels, its challenges in installation, the vessel monitoring and data transmission system. The commonly used methods for data cleaning are also presented. Last but not least, the paper considers two types of the machine learning systems, i.e., supervised and unsupervised machine learning systems. The multi-linear regression and hidden Markov model for supervised machine learning system and the artificial neural network, grey box model and long short-term memory model for unsupervised machine learning are discussed, and their pros and cons are presented.


2021 ◽  
Author(s):  
Yew Kee Wong

In the information era, enormous amounts of data have become available on hand to decision makers. Big data refers to datasets that are not only big, but also high in variety and velocity, which makes them difficult to handle using traditional tools and techniques. Due to the rapid growth of such data, solutions need to be studied and provided in order to handle and extract value and knowledge from these datasets. Machine learning is a method of data analysis that automates analytical model building. It is a branch of artificial intelligence based on the idea that systems can learn from data, identify patterns and make decisions with minimal human intervention. Such minimal human intervention can be provided using big data analytics, which is the application of advanced analytics techniques on big data. This paper aims to analyse some of the different machine learning algorithms and methods which can be applied to big data analysis, as well as the opportunities provided by the application of big data analytics in various decision making domains.


2020 ◽  
Vol 102 (913) ◽  
pp. 199-234
Author(s):  
Nema Milaninia

AbstractAdvances in mobile phone technology and social media have created a world where the volume of information generated and shared is outpacing the ability of humans to review and use that data. Machine learning (ML) models and “big data” analytical tools have the power to ease that burden by making sense of this information and providing insights that might not otherwise exist. In the context of international criminal and human rights law, ML is being used for a variety of purposes, including to uncover mass graves in Mexico, find evidence of homes and schools destroyed in Darfur, detect fake videos and doctored evidence, predict the outcomes of judicial hearings at the European Court of Human Rights, and gather evidence of war crimes in Syria. ML models are also increasingly being incorporated by States into weapon systems in order to better enable targeting systems to distinguish between civilians, allied soldiers and enemy combatants or even inform decision-making for military attacks.The same technology, however, also comes with significant risks. ML models and big data analytics are highly susceptible to common human biases. As a result of these biases, ML models have the potential to reinforce and even accelerate existing racial, political or gender inequalities, and can also paint a misleading and distorted picture of the facts on the ground. This article discusses how common human biases can impact ML models and big data analytics, and examines what legal implications these biases can have under international criminal law and international humanitarian law.


2018 ◽  
Vol 78 (3) ◽  
pp. 643-644 ◽  
Author(s):  
Andrew J. Park ◽  
Justin M. Ko ◽  
Robert A. Swerlick

Sign in / Sign up

Export Citation Format

Share Document