Investigation of Cracking Potential of Modified Asphalt Mixes Composed of Synthetic Fibers by Performing 4-point Bending Test

2021 ◽  
pp. 1181-1187
Author(s):  
Luis Alberto Perca Callomamani ◽  
Leila Hashemian
2020 ◽  
Vol 10 (16) ◽  
pp. 5517 ◽  
Author(s):  
Moustafa Abdelsalam ◽  
Yanchao Yue ◽  
Ahmed Khater ◽  
Dong Luo ◽  
Josephine Musanyufu ◽  
...  

The performance and the fundamental weaknesses of asphalt mix under environmental temperature and water effects have made researchers try to modify the asphalt mix properties by using the proper additives. For this reason, this paper aims to improve the anti-cracking performance and water stability of asphalt pavement by adding a novel composite of diatomite and lignin fiber in asphalt mixes. Four types of asphalt mixes, including control asphalt mix (CAM), diatomite modified asphalt mix (DMAM), lignin fiber modified asphalt mix (LFMAM), and diatomite-lignin fiber composite modified asphalt mix (DLFMAM) were prepared in the laboratory. Low-temperature bending test, Marshall Immersion test, and freeze-thaw splitting test were employed to evaluate the performance of the asphalt mixes. Results reveal that the use of the lignin fiber in reinforced asphalt mixes combined with diatomite led to an enhancement in the asphalt pavement performance more than the other three types of mixes. Diatomite has an important influence on the water damage resistance of asphalt mix more than lignin fiber. On the other hand, diatomite has a small effect on the anti-cracking performance; meanwhile, lignin fiber showed a significant improvement in the cracking resistance of asphalt mixes. DLFMAM has the best traveling performances among all asphalt mixes. Thus, this work provides a good reference for the design of composite asphalt mixes.


Environments ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 47
Author(s):  
Lim Min Khiong ◽  
Md. Safiuddin ◽  
Mohammad Abdul Mannan ◽  
Resdiansyah

This paper presents the results of a laboratory-based experimental investigation on the properties of asphalt binder and hot-mix asphalt (HMA) mixes modified by locally available crumb rubber, which was used as a partial replacement of asphalt by weight. In this study, fine crumb rubber with a particle size in the range of 0.3–0.6 mm, obtained from scrap tires, was added to the asphalt binder through the wet process. Crumb rubber contents of 5%, 10%, 15%, and 19% by weight of asphalt were added to the virgin binder in order to prepare the modified asphalt binder samples, while the unmodified asphalt binder was used as the control sample. The crumb rubber modified binder samples were examined for measuring viscosity indirectly using the penetration test, and temperature resistance using the softening point test. Later, both the modified and unmodified asphalt binders were used to produce HMA mixes. Two categories of HMA mix commonly used in Malaysia—namely, AC 14 (dense-graded) and SMA 14 (gap-graded)—were produced using the modified asphalt binders containing 5%, 10%, 15%, and 19% crumb rubber. Two AC 14 and SMA 14 control mixes were also produced, incorporating the unmodified asphalt binder (0% crumb rubber). All of the AC 14 and SMA 14 asphalt mixes were examined in order to determine their volumetric properties, such as bulk density, voids in total mix (VTM), voids in mineral aggregate (VMA), and voids filled with asphalt (VFA). In addition, the Marshall stability, Marshall flow, and stiffness of all of the AC 14 and SMA 14 mixes were determined. Test results indicated that the modified asphalt binders possessed higher viscosity and temperature resistance than the unmodified asphalt binder. The viscosity and temperature resistance of the asphalt binders increased with the increase in their crumb rubber content. The increased crumb rubber content also led to improvements in the volumetric properties (bulk density, VTM, VMA, and VFA) of the AC 14 and SMA 14 mixes. In addition, the performance characteristics of the AC 14 and SMA 14 mixes—such as Marshall stability, Marshall flow, and stiffness—increased with the increase in crumb rubber content. However, the AC 14 mixes performed much better than the SMA 14 mixes. The overall research findings suggest that crumb rubber can be used to produce durable and sustainable HMA mixes, with manifold environmental benefits, for use in flexible pavements carrying the heavy traffic load of highways.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2434
Author(s):  
Laura Moretti ◽  
Nico Fabrizi ◽  
Nicola Fiore ◽  
Antonio D’Andrea

In recent years, nanotechnology has sparked an interest in nanomodification of bituminous materials to increase the viscosity of asphalt binders and improves the rutting and fatigue resistance of asphalt mixtures. This paper presents the experimental results of laboratory tests on bituminous mixtures laid on a 1052 m-long test section built in Rome, Italy. Four asphalt mixtures for wearing and binder layer were considered: two polymer modified asphalt concretes (the former modified with the additive Superplast and the latter modified with styrene–butadiene–styrene), a “hard” graphene nanoplatelets (GNPs) modified asphalt concrete and a not-modified mixture. The indirect tensile strength, water sensitivity, stiffness modulus, and fatigue resistance of the mixtures were tested and compared. A statistical analysis based on the results has shown that the mixtures with GNPs have higher mechanical performances than the others: GNP could significantly improve the tested mechanical performances; further studies will be carried out to investigate its effect on rutting and skid resistance.


2012 ◽  
Vol 557-559 ◽  
pp. 850-853
Author(s):  
Ning Zhao ◽  
Yu Long Liu ◽  
Gen Hui Gao

Sulfur Extended Asphalt Modified (SEAM) is a newly developed asphalt modifier. The principal purpose of this paper is to study the performance of SEAM modified asphalt under the low temperature. Through the Low-temperature splitting test and the Low-temperature bending test .It indicated that the SEAM enhances the performance of asphalt under the low temperature.


2004 ◽  
Vol 16 (1) ◽  
pp. 45-53 ◽  
Author(s):  
S. K. Palit ◽  
K. Sudhakar Reddy ◽  
B. B. Pandey

2013 ◽  
Vol 477-478 ◽  
pp. 1175-1178
Author(s):  
Ling Zou ◽  
Jing Wei Ne ◽  
Weng Gang Zhang

70# and 90# matrix asphalt mixture with MaR were studied through dynamic modulus test, rutting test, freeze-thaw splitting test, bending test to study the applicability of the Modifying agent of rubber plastic compound (MaR) in matrix asphalt mixture.Test results were Compared with SBSI-C modified asphalt mixture.The results indicate that: high-temperature stability of MaR+70# asphalt mixture is as well as SBSI-C modified asphalt mixture,and is bettere than MaR+90# asphalt mixture; water stability of MaR+90# asphalt mixture is bettere than SBSI-C modified asphalt mixture and MaR+70# asphalt mixture; low temperature performance of MaR+90# asphalt mixture is bettere than MaR+70# asphalt mixture, but is worse than modified asphalt mixture SBSI-C ; MaR+70# asphalt mixture can be first used in area of resisting high temperature and rutting, MaR+90# asphalt mixture can be used if the water stability performance and low temperature performance are considered.


2019 ◽  
Vol 46 (12) ◽  
pp. 1081-1089 ◽  
Author(s):  
Hossein Karimzadeh ◽  
Ali Razmi ◽  
Reza Imaninasab ◽  
Afshin Esminejad

This paper evaluated mixed mode I/II fracture toughness of fiber-reinforced concrete using cracked semi-circular bend (SCB) specimens subjected to three-point bending test. Additionally, a comparison was made between the experimental results and the estimations made by different theoretical criteria. Natural and synthetic fibers at various concentrations were used in this study. After producing cracks in SCB specimens at different inclination angles to induce different mixed mode loading conditions (from pure mode I to II), the fracture toughness of SCB specimens was determined. Furthermore, the compressive, splitting tensile, and flexural strength of natural and synthetic fiber-reinforced concrete were measured after 7 and 28 days of curing. While there is an increase in the aforementioned strengths with fiber content increase, 0.3% was found to be the optimum percentage regarding fracture toughness for both fibers. Also, the comparison between the experimental and theoretical results showed that generalized maximum tangential stress criterion estimated the experimental data satisfactorily.


2012 ◽  
Vol 193-194 ◽  
pp. 452-457 ◽  
Author(s):  
Meng Yun Huang ◽  
Jing Hui Liu ◽  
Xi Zhang ◽  
Dan Ni Li

Using the waste crumb rubber modified asphalt to pave the road surface could reduce cost and save energy. However,in order to obtain adequate workability, the mixing temperature and compaction temperature of rubberized asphalt binder and its mixture is much higher than those of conventional asphalt mixtures. Warm Mix Asphalt (WMA) is the name given to certain technologies that reduce the production and placement temperatures of asphalt mixes. One of the main benefits advertised is the increased workability at conventional and lower compaction temperatures with the WMA addition. This paper evaluates whether there are any synergy effects of using warm mix technologies and Asphalt Rubber(AR) hot mixes. This paper summarizes a lab research to evaluate the workability of Asphalt Rubber hot mixes containing warm mix technologies. Both asphalt binder and asphalt mixture were evaluated and compared. The research suggests that combining WMA technology with Asphalt Rubber mixtures is a win-win.


Sign in / Sign up

Export Citation Format

Share Document