Modeling of Heat Transfer and Transport Phenomena During Laser Welding Of Aluminum/Magnesium Alloys

Author(s):  
S. Ben Halim ◽  
S. Bannour ◽  
K. Abderrazek ◽  
W. Kriaa ◽  
M. Autric
Author(s):  
J. Zhou ◽  
H. L. Tsai ◽  
P. C. Wang

Humping is a frequently observed welding defect in laser welding which is caused when the welding speed exceeds a certain limit while the other welding conditions remain unchanged. Humping is characterized by the appearance of unsmooth and discontinuity of humps at the surface of the weld. The formation of humping is generally understood to be caused by the complex heat transfer and melt flow in a high speed welding process. However, so far the fundamental mechanisms causing humping are not fully understood, and research on determining the onset of humping has been based on the “trial-and-error” procedure. In this paper, mathematical models previously developed by the authors for the transport phenomena in laser welding have been extended to investigate the formation of the humping defect. In this study, the transient heat transfer and melt flow in the weld pool during the keyhole formation and collapse, and melt solidification are calculated for a 3-D moving laser welding. Different humping patterns have been predicted by the present study in different laser power levels and welding speeds. From the present study, it was found that the formation of humping in laser welding is caused by the interplay between two important factors: a) the strong liquid metal flow in the real part of the keyhole induced mainly by the laser recoil pressure and b) the rapid solidification rate of the liquid metal. The humping pattern can be well explained by the calculated melt flow and the solidification process.


2021 ◽  
Vol 321 ◽  
pp. 01008
Author(s):  
Sabrine Ben Halim ◽  
Wassim kriaa ◽  
Michel Autric

Joining dissimilar metals is very difficult due to the formation of brittle intermetallic phases which may be detrimental to mechanical properties. The present work aims to investigate the transport phenomenon in the weld bead and to understand the materials mixing during laser welding process of dissimilar Aluminum-Magnesium alloys. A three-dimensional transient model based on fluid flow, heat and mass transfer has been developed to predict the formation of the weld and to study numerically and experimentally the diffusion of alloying elements in the melted zone. SEM analysis of chemical composition has been realized to map elements distribution in the melted zone. The results of simulation show the formation of a heterogeneous mixture in the melt pool. The elements distribution map and the presence of brittle intermetallic phases in the fusion zone were analysed. The formation of intermetallic compounds, comprising Al3Mg2 and Al12Mg17 phases were predicted by studying the chemical elements distribution in the weld pool. A good tendency between experimental and numerical results is noticed for the weld.


2020 ◽  
pp. 12-18
Author(s):  
F.A. Urazbahtin ◽  
A.YU. Urazbahtina

A multifactor mathematical model of the welding process of products from aluminum-magnesium alloys, consisting of 71 indicators that assess the quality of the weld, the welding process, costs, equipment operation and quality of the welded material. The model can be used to control and optimize the welding process of products from aluminum-magnesium alloys. Keywords welding, products, aluminum-magnesium alloy, indicators, process parameters, welding equipment, welding materials, electrode sharpening, lining [email protected]


2021 ◽  
Author(s):  
Anand Mohan ◽  
Dariusz Ceglarek ◽  
Michael Auinger

Abstract This research aims at understanding the impact of welding process parameters and beam oscillation on the weld thermal cycle during laser welding. A three-dimensional heat transfer model is developed to simulate the welding process, based on the finite element (FE) method. The calculated thermal cycle and weld morphology are in good agreement with experimental results from literature. By utilizing the developed heat transfer model, the effect of welding process parameters such as heat source power, welding speed, radius of oscillation, and frequency of oscillation on the intermediate performance indicators (IPIs) such as peak temperature, heat-affected zone volume (HAZ), and cooling rate is quantified. Parametric contour maps for peak temperature, HAZ volume, and cooling rate are developed for the estimation of the process capability space. An integrated approach for rapid process assessment, process capability space refinement, based on IPIs is proposed. The process capability space will guide the identification of the initial welding process parameters window and help in reducing the number of experiments required by refining the feasible region of process parameters based on the interactions with the IPIs. Here, the peak temperature indicates the mode of welding performed while the HAZ volume and cooling rate are weld quality indicators. The regression relationship between the welding process parameters and the IPIs is established for quick estimation of IPIs to replace time-consuming numerical simulations. The proposed approach provides a unique ability to simulate the laser welding process and provides a robust range of process parameters.


Sign in / Sign up

Export Citation Format

Share Document