scholarly journals Assessment of RANS Turbulence Models for Straight Cooling Ducts: Secondary Flow and Strong Property Variation Effects

Author(s):  
Thomas Kaller ◽  
Alexander Doehring ◽  
Stefan Hickel ◽  
Steffen J. Schmidt ◽  
Nikolaus A. Adams

Abstract We present well-resolved RANS simulations of two generic asymmetrically heated cooling channel configurations, a high aspect ratio cooling duct operated with liquid water at $$Re_b = 110 \times 10^3$$ and a cryogenic transcritical channel operated with methane at $$Re_b = 16 \times 10^3$$. The former setup serves to investigate the interaction of turbulence-induced secondary flow and heat transfer, and the latter to investigate the influence of strong non-linear thermodynamic property variations in the vicinity of the critical point on the flow field and heat transfer. To assess the accuracy of the RANS simulations for both setups, well-resolved implicit LES simulations using the adaptive local deconvolution method as subgrid-scale turbulence model serve as comparison databases. The investigation focuses on the prediction capabilities of RANS turbulence models for the flow as well as the temperature field and turbulent heat transfer with a special focus on the turbulent heat flux closure influence.

Author(s):  
Roberto Da Vià ◽  
Sandro Manservisi ◽  
Valentina Giovacchini

The study of turbulent heat transfer in liquid metal flows has gained interest because of applications in several industrial fields. The common assumption of similarity between the dynamical and thermal turbulence, namely the Reynolds analogy, has been proven to be not valid for these fluids. Many methods have been proposed in order to overcome the difficulties encountered in a proper definition of the turbulent heat flux, such as global or local correlations for the turbulent Prandtl number or four parameter turbulence models. In this work we assess a four parameter logarithmic turbulence model for liquid metals based on RANS approach. Several simulation results considering fluids with Pr = 0.01 and Pr = 0.025 are reported in order to show the validity of this approach. The Kays turbulence model is also assessed and compared with integral heat transfer correlations for a wide range of Peclet numbers.


2020 ◽  
Vol 10 (12) ◽  
pp. 4337
Author(s):  
Roberto Da Vià ◽  
Valentina Giovacchini ◽  
Sandro Manservisi

The study of turbulent heat transfer in liquid metal flows has gained interest because of applications in several industrial fields. The common assumption of similarity between the dynamical and thermal turbulence, namely, the Reynolds analogy, has been proven to be invalid for these fluids. Many methods have been proposed in order to overcome the difficulties encountered in a proper definition of the turbulent heat flux, such as global or local correlations for the turbulent Prandtl number and four parameter turbulence models. In this work we assess a four parameter logarithmic turbulence model for liquid metals based on the Reynolds Averaged Navier-Stokes (RAN) approach. Several simulation results considering fluids with P r = 0.01 and P r = 0.025 are reported in order to show the validity of this approach. The Kays turbulence model is also assessed and compared with integral heat transfer correlations for a wide range of Peclet numbers.


Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 901
Author(s):  
Davide Bertini ◽  
Lorenzo Mazzei ◽  
Antonio Andreini

Computational Fluid Dynamics is a fundamental tool to simulate the flow field and the multi-physics nature of the phenomena involved in gas turbine combustors, supporting their design since the very preliminary phases. Standard steady state RANS turbulence models provide a reasonable prediction, despite some well-known limitations in reproducing the turbulent mixing in highly unsteady flows. Their affordable cost is ideal in the preliminary design steps, whereas, in the detailed phase of the design process, turbulence scale-resolving methods (such as LES or similar approaches) can be preferred to significantly improve the accuracy. Despite that, in dealing with multi-physics and multi-scale problems, as for Conjugate Heat Transfer (CHT) in presence of radiation, transient approaches are not always affordable and appropriate numerical treatments are necessary to properly account for the huge range of characteristics scales in space and time that occur when turbulence is resolved and heat conduction is simulated contextually. The present work describes an innovative methodology to perform CHT simulations accounting for multi-physics and multi-scale problems. Such methodology, named U-THERM3D, is applied for the metal temperature prediction of an annular aeroengine lean burn combustor. The theoretical formulations of the tool are described, together with its numerical implementation in the commercial CFD code ANSYS Fluent. The proposed approach is based on a time de-synchronization of the involved time dependent physics permitting to significantly speed up the calculation with respect to fully coupled strategy, preserving at the same time the effect of unsteady heat transfer on the final time averaged predicted metal temperature. The results of some preliminary assessment tests of its consistency and accuracy are reported before showing its exploitation on the real combustor. The results are compared against steady-state calculations and experimental data obtained by full annular tests at real scale conditions. The work confirms the importance of high-fidelity CFD approaches for the aerothermal prediction of liner metal temperature.


2011 ◽  
Vol 110-116 ◽  
pp. 2364-2369
Author(s):  
Amin Etminan ◽  
H. Jafarizadeh ◽  
M. Moosavi ◽  
K. Akramian

In the part 1 of this research, some useful turbulence models presented. In that part advantages of those turbulence models has been gathered. In the next, numerical details and procedure of solution are presented in details. By use of different turbulence models, it has been found that Spallart-Allmaras predicted the lowest value of heat transfer coefficient; in contrast, RSM1 has projected the more considerable results compared with other models; besides, it has been proven that the two-equation models prominently taken lesser time than RSM model. Eventually, the RNG2 model has been introduced as the optimized model of this research; moreover.


Author(s):  
Adam H. Richards ◽  
Robert E. Spall

A two-equation k-ω model is used to model a strongly heated, low-Mach number gas flowing upward in a vertical tube. Heating causes significant property variation and thickening of the viscous sublayer, consequently a fully developed flow does not evolve. Two-equation turbulence models generally perform poorly under such conditions. Consequently, in the present work, a near-wall two-equation heat transfer model is utilized in conjunction with the k-ω model to improve heat transfer predictions.


Author(s):  
Masaya Suzuki ◽  
Kazuaki Inaba ◽  
Makoto Yamamoto

Sand erosion is a phenomenon where solid particles impinging to a wall cause serious mechanical damages to the wall surface. This phenomenon is a typical gas-particle two-phase turbulent flow and a multi-physics problem where the flow field, particle trajectory and wall deformation interact with among others. On the other hand, the sand erosion is a serious problem to install pneumatic conveying systems for handling abrasive materials. Incidentally, the bend erosion is typical target of sand erosion experiments and is useful for verification of numerical simulations. Although, the secondary flow which occurs in such a flow field including streamline curvature cannot be reproduced by the standard k-ε model. To predict this flow field, a more universal model which can estimate anisotropic Reynolds stress is required. In the present study, we simulate sand erosion of 90 degree bend with a square cross-section. We use some linear/nonlinear turbulence models to predict the secondary flow of the bend. Besides, the performance of each model to predict clear/eroded bend flow field is studied.


1985 ◽  
Vol 107 (1) ◽  
pp. 70-76 ◽  
Author(s):  
A. M. Gooray ◽  
C. B. Watkins ◽  
Win Aung

Results of numerical calculations for heat transfer in turbulent recirculating flow over two-dimensional, rearward-facing steps and sudden pipe expansions are presented. The turbulence models used in the calculation are the standard k – ε model and the low-Reynolds number version of this model. The k – ε models have been improved to account for the effects of streamline curvature and pressure-strain (scalar) interactions including wall damping. A sequence of two computational passes is performed to obtain optimal results over the entire flow field. The presented results consist of computed distributions of heat transfer coefficents for several Reynolds numbers, emphasizing the low-to-moderate Reynolds number regime. The heat transfer results also include correlations of Nusselt numnber for both side and bottom walls. The computed heat transfer results and typical computed fluid dynamic results are compared with available experimental data.


2016 ◽  
Vol 798 ◽  
pp. 299-349 ◽  
Author(s):  
Bo Sun ◽  
Sudheer Tenneti ◽  
Shankar Subramaniam ◽  
Donald L. Koch

Fluctuations in the gas-phase velocity can contribute significantly to the total gas-phase kinetic energy even in laminar gas–solid flows as shown by Mehrabadi et al. (J. Fluid Mech., vol. 770, 2015, pp. 210–246), and these pseudo-turbulent fluctuations can also enhance heat transfer in gas–solid flow. In this work, the pseudo-turbulent heat flux arising from temperature–velocity covariance, and average fluid-phase conduction during convective heat transfer in a gas–solid flow are quantified and modelled over a wide range of mean slip Reynolds number and solid volume fraction using particle-resolved direct numerical simulations (PR-DNS) of steady flow through a random assembly of fixed isothermal monodisperse spherical particles. A thermal self-similarity condition on the local excess temperature developed by Tenneti et al. (Intl J. Heat Mass Transfer, vol. 58, 2013, pp. 471–479) is used to guarantee thermally fully developed flow. The average gas–solid heat transfer rate for this flow has been reported elsewhere by Sun et al. (Intl J. Heat Mass Transfer, vol. 86, 2015, pp. 898–913). Although the mean velocity field is homogeneous, the mean temperature field in this thermally fully developed flow is inhomogeneous in the streamwise coordinate. An exponential decay model for the average bulk fluid temperature is proposed. The pseudo-turbulent heat flux that is usually neglected in two-fluid models of the average fluid temperature equation is computed using PR-DNS data. It is found that the transport term in the average fluid temperature equation corresponding to the pseudo-turbulent heat flux is significant when compared to the average gas–solid heat transfer over a significant range of solid volume fraction and mean slip Reynolds number that was simulated. For this flow set-up a gradient-diffusion model for the pseudo-turbulent heat flux is found to perform well. The Péclet number dependence of the effective thermal diffusivity implied by this model is explained using a scaling analysis. Axial conduction in the fluid phase, which is often neglected in existing one-dimensional models, is also quantified. As expected, it is found to be important only for low Péclet number flows. Using the exponential decay model for the average bulk fluid temperature, a model for average axial conduction is developed that verifies standard assumptions in the literature. These models can be used in two-fluid simulations of heat transfer in fixed beds. A budget analysis of the mean fluid temperature equation provides insight into the variation of the relative magnitude of the various terms over the parameter space.


Author(s):  
Vera Papp ◽  
Andrea Pucciarelli ◽  
Medhat Sharabi ◽  
Walter Ambrosini

This work proposes simulations of heat transfer under supercritical pressure conditions showing improvements with respect to previous works. This is obtained by the introduction of the Algebraic Heat Flux Model (AHFM) for evaluating the turbulent heat flux in turbulence production terms, using the in-house code THEMAT and the STAR-CCM+ code. The first code makes use of the AHFM also in the energy balance equations, while for the commercial code simplifying assumptions are considered in the implementations. Custom sets of parameters for every condition of inlet temperature and internal diameter are tuned in some cases, driven by the opinion that a single set of parameters cannot be suitable in every flow conditions, considering the complexity of the variables that concur in the heat transfer deterioration phenomenon. The AHFM model gives promising results with new sets of parameters in order to model the deterioration and the recovery phases because of its term related to the variance of temperature.


Sign in / Sign up

Export Citation Format

Share Document