scholarly journals Prediction of Liner Metal Temperature of an Aeroengine Combustor with Multi-Physics Scale-Resolving CFD

Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 901
Author(s):  
Davide Bertini ◽  
Lorenzo Mazzei ◽  
Antonio Andreini

Computational Fluid Dynamics is a fundamental tool to simulate the flow field and the multi-physics nature of the phenomena involved in gas turbine combustors, supporting their design since the very preliminary phases. Standard steady state RANS turbulence models provide a reasonable prediction, despite some well-known limitations in reproducing the turbulent mixing in highly unsteady flows. Their affordable cost is ideal in the preliminary design steps, whereas, in the detailed phase of the design process, turbulence scale-resolving methods (such as LES or similar approaches) can be preferred to significantly improve the accuracy. Despite that, in dealing with multi-physics and multi-scale problems, as for Conjugate Heat Transfer (CHT) in presence of radiation, transient approaches are not always affordable and appropriate numerical treatments are necessary to properly account for the huge range of characteristics scales in space and time that occur when turbulence is resolved and heat conduction is simulated contextually. The present work describes an innovative methodology to perform CHT simulations accounting for multi-physics and multi-scale problems. Such methodology, named U-THERM3D, is applied for the metal temperature prediction of an annular aeroengine lean burn combustor. The theoretical formulations of the tool are described, together with its numerical implementation in the commercial CFD code ANSYS Fluent. The proposed approach is based on a time de-synchronization of the involved time dependent physics permitting to significantly speed up the calculation with respect to fully coupled strategy, preserving at the same time the effect of unsteady heat transfer on the final time averaged predicted metal temperature. The results of some preliminary assessment tests of its consistency and accuracy are reported before showing its exploitation on the real combustor. The results are compared against steady-state calculations and experimental data obtained by full annular tests at real scale conditions. The work confirms the importance of high-fidelity CFD approaches for the aerothermal prediction of liner metal temperature.

Author(s):  
Brian McLaughlin ◽  
Matthew Worsley ◽  
Richard Stainsby ◽  
Andrew Grief ◽  
Ana Dennier ◽  
...  

This paper describes pressure drop and heat transfer coefficient predictions for a typical coolant flow within the core of a pebble bed reactor (PBR) by examining a representative group of pebbles remote from the reflector region. The three-dimensional steady state flow and heat transfer predictions utilized in this work are obtained from a computational fluid dynamics (CFD) model created in the commercial software ANSYS FLUENT™. This work utilizes three RANS turbulence models and the Chilton-Colburn analogy for heat transfer. A methodology is included in this paper for creating a quality unstructured mesh with prismatic surface layers on a random arrangement of touching pebbles. The results of the model are validated by comparing them with the correlations of the German KTA rules for a PBR.


2019 ◽  
Vol 7 (1) ◽  
pp. 43-53
Author(s):  
Abbas Jassem Jubear ◽  
Ali Hameed Abd

The heat sink with vertically rectangular interrupted fins was investigated numerically in a natural convection field, with steady-state heat transfer. A numerical study has been conducted using ANSYS Fluent software (R16.1) in order to develop a 3-D numerical model.  The dimensions of the fins are (305 mm length, 100 mm width, 17 mm height, and 9.5 mm space between fins. The number of fins used on the surface is eight. In this study, the heat input was used as follows: 20, 40, 60, 80, 100, and 120 watts. This study focused on interrupted rectangular fins with a different arrangement and angle of the fins. Results show that the addition of interruption in fins in various arrangements will improve the thermal performance of the heat sink, and through the results, a better interruption rate as an equation can be obtained.


2021 ◽  
Vol 1 (5) ◽  
pp. e1539
Author(s):  
Paulo Rocha ◽  
Felipe Pinto Marinho ◽  
Victor Oliveira Santos ◽  
Stéphano Praxedes Mendonça ◽  
Maria Eugênia Vieira da Silva

Topics related to the modeling of turbulent flow feature significant relevance in several areas, especially in engineering, since the vast majority of flows present in the design of devices and systems are characterized to be turbulent. A vastly applied tool for the analysis of such flows is the use of numerical simulations based on turbulence models. Thus, this work aims to evaluate the performance of several turbulence models when applied to classic problems of fluid mechanics and heat transfer, already extensively validated by empirical procedures. The OpenFOAM open source software was used, being highly suitable for obtaining numerical solutions to problems of fluid mechanics involving complex geometries. The problems for the evaluation of turbulence models selected were: two-dimensional cavity, Pitz-Daily, air flow over an airfoil, air flow over the Ahmed blunt body and the problem of natural convection between parallel plates. The solution to such problems was achieved by utilizing several Reynolds Averaged  Equations (RANS) turbulence models, namely: k-ε, k-ω, Lam-Bremhorst k-ε, k-ω SST, Lien-Leschziner k-ε, Spalart-Allmaras, Launder-Sharma k-ε, renormalization group (RNG) k-ε. The results obtained were compared to those found in the literature which were empirically obtained, thus allowing the assessment of the strengths and weaknesses of the turbulence modeling applied in each problem.


2019 ◽  
Vol 11 (2) ◽  
pp. 216-228
Author(s):  
Ass. Prof. Dr. Abbas Jassem Jubear ◽  
Ali Hameed Abd

The heat sink with vertically rectangular interrupted fins investigated numerically in a natural convection field, and with steady-state heat transfer. Numerical study has been conducted using ANSYS Fluent software (R16.1) in order to develop a 3-D numerical model.  The dimensions of fins are (305 mm length, 100 mm width, 17 mm height, and 9.5 mm space between fins). The number of fins used on the surface are eight. In this study, the heat input that is  used as follow (20, 40, 60, 80, 100, and 120 watts). The study is focused on interrupted rectangular fins with different arrangement of fins. The results show that the addition of interruption fins in various arrangements will improve the thermal performance of the heat sink, and through the results, a better interruption rate obtained as an equation.                                                         


Author(s):  
Thomas Kaller ◽  
Alexander Doehring ◽  
Stefan Hickel ◽  
Steffen J. Schmidt ◽  
Nikolaus A. Adams

Abstract We present well-resolved RANS simulations of two generic asymmetrically heated cooling channel configurations, a high aspect ratio cooling duct operated with liquid water at $$Re_b = 110 \times 10^3$$ and a cryogenic transcritical channel operated with methane at $$Re_b = 16 \times 10^3$$. The former setup serves to investigate the interaction of turbulence-induced secondary flow and heat transfer, and the latter to investigate the influence of strong non-linear thermodynamic property variations in the vicinity of the critical point on the flow field and heat transfer. To assess the accuracy of the RANS simulations for both setups, well-resolved implicit LES simulations using the adaptive local deconvolution method as subgrid-scale turbulence model serve as comparison databases. The investigation focuses on the prediction capabilities of RANS turbulence models for the flow as well as the temperature field and turbulent heat transfer with a special focus on the turbulent heat flux closure influence.


Author(s):  
Tej Pratap Singh ◽  
Anupam Dewan

Abstract An enhancement in heat transfer is the key objective in any thermal system where an efficient cooling is needed. This requirement becomes more important for turbulent flow. A turbulent dual jet is associated with entrainment and mixing processes in several applications. This paper aims at enhancing the heat transfer rate by utilizing the wavy surface of a heated plate. Heat transfer and flow characteristics are studied using five low-Re RANS turbulence models, namely, Yang and Shih k-ε (YS), Launder and Sharma k-ε (LS), realizable k-ε, renormalization group k-ε (RNG) and shear-stress transport k-ω (SST) models. The amplitude of the wavy surface is varied from 0.1 to 0.8 for the number of cycles fixed to 7. The Reynolds number and offset ratio are set to 15000 and 3, respectively. An isothermal wall condition is used at the wavy wall. An experimental validation has been performed. An enhancement of 55.94% in heat transfer is achieved by the RNG k-ε model. Further, it is noticed that the YS model fails to predict the flow separation as the amplitude of the sinusoidal wavy surface increases. However, the SST model reveals that the flow separates when the amplitude increases beyond 0.6. The thermal-hydraulic performance (THP) is found to increase for the RNG model by approximately 13.9% for the maximum amplitude considered. As the profiles of the bottom walls change, various turbulence models predict different fluid flow characteristics.


Author(s):  
S. Mohanty ◽  
R. Arora

In this investigation, a comprehensive approach is established in detail to analyse the effectiveness of the shell and tube heat exchanger (STE) with 50% baffle cuts (Bc) with varying number of baffles. CFD simulations were conducted on a single pass and single tube heat exchanger(HE) using water as working fluid. A counterflow technique is implemented for this simulation study. Based on different approaches made on design analysis for a heat exchanger, here, a mini shell and tube exchanger (STE) computational model is developed. Commercial CFD software package ANSYS-Fluent 14.0 was used for computational analysis and comparison with existing literature in the view of certain variables; in particular, baffle cut, baffle spacing, the outcome of shell and tube diameter on the pressure drop and heat transfer coefficient. However, the simulation results are more circumscribed with the applied turbulence models such as Spalart-Allmaras, k-ɛ standard and k-ɛ realizable. For determining the best among the turbulence models, the computational results are validated with the existing literature. The proposed study portrays an in-depth outlook and visualization of heat transfer coefficient and pressure drop along the length of the heat exchanger(HE). The modified design of the heat exchanger yields a maximum of 44% pressure drop reduction and an increment of 60.66% in heat transfer.


Author(s):  
Afaque Shams ◽  
Tomasz Kwiatkowski

Detailed knowledge of a coolant flow in a fuel assembly of a reactor core has always been a major factor in the design of new nuclear systems. In this regard, traditionally adopted subchannel analysis codes cannot take into account local phenomena, which are quite essential. On the other hand, Computational Fluid Dynamic (CFD) is being recognized as a valuable research tool for thermal-hydraulics phenomenon in the fuel assembly geometries. Because of the high Reynolds number and geometric complexities, the practical CFD calculations are mostly limited to pragmatic Reynolds Averaged Navier-Stokes (RANS) type modelling approaches. A good prediction of the flow and heat transport inside the fuel rod bundle is a challenge for such RANS turbulence models and these models need to be validated. Although the measurement techniques are constantly getting improved, however, the CFD-grade experiments of flow mixing and heat transfer in the subchannel scale are often impossible or quite costly to be performed. In addition, lack of experimental databases makes it impossible to validate and/or calibrate the available RANS turbulence models for certain flow situations. In that context, Direct Numerical Simulation (DNS) can serve as a reference for model development and validation. The aim of this work is to design a numerical experiment in order to generate a high quality DNS database for a tight lattice bare rod bundle, which will serve as a reference for the validation purpose. The considered geometric design is based on the well-known Hooper experiment, which contains a bare rod bundle with pitch-to-diameter ratio of P/D = 1.107. Performing a DNS computation corresponding to the Hooper experiment requires a huge computational power. Hence, a wide range of unsteady RANS (URANS) study has been performed to scale-down the Reynolds number such that it is feasible for a DNS computation and at the same time it still preserves the main flow characteristics. In addition to the flow field, a parametric study for three different passive scalars is performed to take into account the heat transfer analysis. These passive scalars correspond to the Prandtl numbers of air, water and liquid metal fluids. The heat transfer of these three fluids has been studied in combination with two different boundary conditions at the walls, i.e. a constant temperature and a constant heat flux. Finally, the obtained URANS results are used to compute the Kolmogorov and Batchelor length scales in order to estimate the overall meshing requirements for the targeted DNS.


Sign in / Sign up

Export Citation Format

Share Document