Blow That Horn: An Elementary Model of Brass Playing

Author(s):  
Murray Campbell ◽  
Joël Gilbert ◽  
Arnold Myers
Keyword(s):  
2013 ◽  
Vol 284-287 ◽  
pp. 652-656 ◽  
Author(s):  
Chiung Wen Tsai ◽  
Chun Kuan Shih ◽  
Jong Rong Wang

A lumped-parameter numerical model was constructed based on the conservation laws of mass and energy and the point neutron kinetics with 6 groups of delayed neutron to represent the dynamics of primary loop of a pressurized water reactor (PWR) core. On the viewpoint of control theory, the coupled phenomenon of neutron kinetics and thermohydraulics can be recognized as a dynamic system with feedback loops which is caused by the Doppler effect and the coolant temperature difference. Scilab was implemented to representing the equivalent transfer functions and associated feedback loops of a PWR core. The dynamic responses were performed by the perturbations of coolant inlet flow, coolant inlet temperature, and reactivity insertion.


Author(s):  
Fabio Ciampoli ◽  
Nicholas J. Hills ◽  
John W. Chew ◽  
Timothy Scanlon

Results of fully unsteady numerical simulations of the flow in a direct transfer pre-swirl system are presented and compared with previously published experimental data from an aero-engine representative rig. The conditions considered include those where strong unsteady effects were observed experimentally. Two different rig builds are considered, with the main difference being in the design of the pre-swirl nozzles. The agreement between calculation and experiment is very good in terms of nozzle and receiver hole discharge coefficients and in identifying significant unsteady effects at certain conditions. Predicted cooling air delivery temperatures are lower than those measured. This may be due to heat transfer and other effects in the rig which have not been modelled. Present unsteady results also show agreement, where appropriate, with earlier steady CFD and an elementary model. Both calculations and measurements show similar performance in terms of delivery temperature for the two different builds studied, despite significant difference in pre-swirl nozzle discharge coefficients for the two builds. The calculations indicate that this is associated with the nozzle velocity coefficient being considerably higher than the discharge coefficient in one case.


Author(s):  
Mohd Anjum ◽  
Sana Shahab ◽  
Mohammad Sarosh Umar

Grey forecasting theory is an approach to build a prediction model with limited data to produce better forecasting results. This forecasting theory has an elementary model, represented as the GM(1,1) model , characterized by the first-order differential equation of one variable. It has the potential for accurate and reliable forecasting without any statistical assumption. The research proposes a methodology to derive the modified GM(1,1) model with improved forecasting precision. The residual series is forecasted by the GM(1,1) model to modify the actual forecasted values. The study primarily addresses two fundamental issues: sign prediction of forecasted residual and the procedure for formulating the grey model. Accurate sign prediction is very complex, especially when the model lacks in data. The signs of forecasted residuals are determined using a multilayer perceptron to overcome this drawback. Generally, the elementary model is formulated conventionally, containing the parameters that cannot be calculated straightforward. Therefore, maximum likelihood estimation is incorporated in the modified model to resolve this drawback. Three statistical indicators, relative residual, posterior variance test, and absolute degree of grey indices, are evaluated to determine the model fitness and validation. Finally, an empirical study is performed using actual municipal solid waste generation data in Saudi Arabia, and forecasting accuracies are compared with the linear regression and original GM(1,1). The MAPEs of all models are rigorously examined and compared, and then it is obtained that the forecasting precision of GM(1,1) model , modified GM(1,1) model, and linear regression is 15.97%, 8.90%, and 27.90%, respectively. The experimental outcomes substantiate that the modified grey model is a more suitable forecasting approach than the other compared models.


2018 ◽  
Vol 154 (2) ◽  
pp. 307-325 ◽  
Author(s):  
Jean-Marc Malambwe Kilolo
Keyword(s):  

2019 ◽  
Vol 23 (4) ◽  
pp. 573-591
Author(s):  
Irina Brailovsky ◽  
Leonid Kagan ◽  
Peter Gordon ◽  
Gregory Sivashinsky
Keyword(s):  

1982 ◽  
Vol 243 (1) ◽  
pp. H99-H112 ◽  
Author(s):  
K. B. Campbell ◽  
J. A. Ringo ◽  
Y. Wakao ◽  
P. A. Klavano ◽  
J. E. Alexander

The relationship between right ventricle afterloading pressure (P) and outflow (Q) was studied in three isolated canine right ventricle (RV) preparations. Right atrial pressure was held constant while graded elevations in P were induced with stepwise occlusions of the right and left branches of the pulmonary artery. P and Q signals were collected and analyzed using a digital computer system. Data were analyzed by assuming a model structure for the RV and comparing resultant model predictions of Q with actual observations. The model structure was modified in accordance with the discrepancy between prediction and observation to improve the model's predictive capability. The initial model tested was the time-varying linear relationship between ventricular volume and pressure. Utilizing this model, accurate predictions of RV outflow in the face of varying pressure afterloads could not be made. The addition of a series resistance to this elementary model resulted in marked improvement in predictive performance. The addition of greater complexity to the model gave only marginal improvement to the model's predictive capability. It was concluded that a time-varying capacitance and series resistance adequately model internal properties of the RV that relate outflow to afterloading pressure.


1994 ◽  
Vol 47 (1) ◽  
pp. 131 ◽  
Author(s):  
JB Peel ◽  
RG Rothwell

The isolation and spectroscopic characterization of halogenated fullerene-60 compounds has not advanced greatly during the 2 years of effort in this area. While the fully fluorinated C60F60 has been studied in some detail, other halogen addition processes have indicated chlorination up to C60Cl24 and bromination up to C60Br24. However, definitive structural information has to date only been provided for three compounds, namely C60Br6, C60Br6 and C60Br24. Iodine does not appear to form genuine addition compounds. In the work reported here semiempirical calculations using the AM1 approximation with the MOPAC molecular orbital program have been directed to comparing the possible stable isomers of the 1:1 addition compounds C60X2 for X = F, Cl and Br. The favoured isomers can be described as 1,2-additions (to a double bond at a hexagon-hexagon fusion) and 1,4-additions (to the terminal carbons of a butadiene moiety) with higher-energy isomers resulting from 1,6- and 1,8-additions. The other isomers represented by 1,3- 1,5- and 1,7-additions are only stable relative to dissociation in the case of the fluorine addition compounds. By contrast for Br2 addition only the 1,2- and 1,4-isomers are stable toward dissociation. The calculations show that, at and near the addition site carbons, X2 addition is adequately described in terms of local distortion of the C60 sphere. The elementary model of C60 as comprising formal single and double bonds is relevant since C60 behaves as a 'poly- alkene ', with sp3 carbons replacing sp2 carbons at the addition sites. This model offers an explanation for the unique structures observed for C60Br6 and C60Br24 which the AM1calculations show to be very stable toward dissociation. However, the experimental C60Br8 structure is found to be relatively less stable than another isomer. Also high-stability isomers of C60Br4, C60Br10, C60Br12 and C60Br18 are predicted.


Sign in / Sign up

Export Citation Format

Share Document