Comparison of Sentinel-2 Multispectral Imager (MSI) and Landsat 8 Operational Land Imager (OLI) for Vegetation Monitoring

Author(s):  
Santanu Ghosh ◽  
Debabrata Behera ◽  
S. Jayakumar ◽  
Pulakesh Das
2020 ◽  
Author(s):  
Manivasagam Vellalapalayam Subramanian ◽  
Gregoriy Kaplan ◽  
Offer Rozenstein

<p>The availability of public-domain high-resolution satellite imagery such as Sentinel-2 and Landsat-8 has increased earth observation (EO) studies across the globe. Empirically combining different EO sensor data into a single dataset increases the temporal coverage, which is useful for land-cover monitoring. In this study, a transformation model was developed for Sentinel-2 and Vegetation and Environmental New micro Spacecraft (VENμS) imagery over Israel. Both sensors offer high spatio-temporal resolution imagery, i.e., VENμS has a 10m spatial resolution with a two-day revisit period, and Sentinel-2 has a 10-20 m spatial resolution with a five-day revisit period. Near-simultaneously acquired imagery was employed for the transformation model development. The model coefficients were derived for the overlapping spectral regions of both sensors. Further, the transformation model performance was tested using various statistical measures, namely, orthogonal distance regression (ODR), spectral angle mapper (SAM), and mean absolute difference (MAD). The validation results highlighted that MAD values were reduced between Sentinel-2 and transformed VENμS reflectance. Similarly, the ODR slope values became closer to one, and the overall spectral similarity increased as demonstrated by a decrease in SAM values. This transformation function creates a unified reflectance dataset in the form of a dense time-series of observation, especially useful for vegetation monitoring.</p>


ACTA IMEKO ◽  
2016 ◽  
Vol 5 (2) ◽  
pp. 44 ◽  
Author(s):  
Pia Addabbo ◽  
Mariano Focareta ◽  
Salvo Marcuccio ◽  
Claudio Votto ◽  
Silvia Liberata Ullo

<p class="Abstract"><span lang="EN-US">With the entry into operation of the Sentinel-2 mission in June 2015, a new land monitoring costellation of twin satellites has been added to Copernicus project from ESA and new insights have been derived through the combination of Sentinel-2 data with other optical/multispectral data, and with other data from satellites belonging to the same Copernicus  project.  To this end, the objective of this paper has been to present new added-value tools first through the integration of different satellite platforms: data from NASA Landsat-8 and ESA Sentinel-1 have been used and combined, and furthermore through the comparison of satellite data all from the same Copernicus project: data from Sentinel-1 and Sentinel-2 have been jointly processed and compared. Although data from optical/multispectral sensors, as those of Landsat-8 and Sentinel-2, and data from SAR on board of Sentinel-1,  are very different,  their combination provides useful and interesting results. The integration and combination of these data can find useful application in many fields from oceans to waterways, from land surfaces to fossil deposits, from vegetation to forest areas. In this works authors have focused their interest in green areas and vegetation monitoring applications, by choosing as case of interest the Royal Palace of Caserta and its gardens.  The idea has started from the increasing interest in monitoring  the cultural heritage monuments and in particular  the surrounding vegetation with the green areas and the parks inside. Satellite images can put into evidence boundaries modifications, the vegetation state, their possible degradation, and other phenomena such as changes in the territories due both to natural and to anthropogenic causes. Data combination from different sources as above specified gives a good number of indexes very useful to analyze the vegetation state and its health in a very deep way. Many of these indexes have been calculated and discussed for investigation.</span></p>


2021 ◽  
Vol 13 (8) ◽  
pp. 1509
Author(s):  
Xikun Hu ◽  
Yifang Ban ◽  
Andrea Nascetti

Accurate burned area information is needed to assess the impacts of wildfires on people, communities, and natural ecosystems. Various burned area detection methods have been developed using satellite remote sensing measurements with wide coverage and frequent revisits. Our study aims to expound on the capability of deep learning (DL) models for automatically mapping burned areas from uni-temporal multispectral imagery. Specifically, several semantic segmentation network architectures, i.e., U-Net, HRNet, Fast-SCNN, and DeepLabv3+, and machine learning (ML) algorithms were applied to Sentinel-2 imagery and Landsat-8 imagery in three wildfire sites in two different local climate zones. The validation results show that the DL algorithms outperform the ML methods in two of the three cases with the compact burned scars, while ML methods seem to be more suitable for mapping dispersed burn in boreal forests. Using Sentinel-2 images, U-Net and HRNet exhibit comparatively identical performance with higher kappa (around 0.9) in one heterogeneous Mediterranean fire site in Greece; Fast-SCNN performs better than others with kappa over 0.79 in one compact boreal forest fire with various burn severity in Sweden. Furthermore, directly transferring the trained models to corresponding Landsat-8 data, HRNet dominates in the three test sites among DL models and can preserve the high accuracy. The results demonstrated that DL models can make full use of contextual information and capture spatial details in multiple scales from fire-sensitive spectral bands to map burned areas. Using only a post-fire image, the DL methods not only provide automatic, accurate, and bias-free large-scale mapping option with cross-sensor applicability, but also have potential to be used for onboard processing in the next Earth observation satellites.


2021 ◽  
Vol 13 (3) ◽  
pp. 438
Author(s):  
Subrina Tahsin ◽  
Stephen C. Medeiros ◽  
Arvind Singh

Long-term monthly coastal wetland vegetation monitoring is the key to quantifying the effects of natural and anthropogenic events, such as severe storms, as well as assessing restoration efforts. Remote sensing data products such as Normalized Difference Vegetation Index (NDVI), alongside emerging data analysis techniques, have enabled broader investigations into their dynamics at monthly to decadal time scales. However, NDVI data suffer from cloud contamination making periods within the time series sparse and often unusable during meteorologically active seasons. This paper proposes a virtual constellation for NDVI consisting of the red and near-infrared bands of Landsat 8 Operational Land Imager, Sentinel-2A Multi-Spectral Instrument, and Advanced Spaceborne Thermal Emission and Reflection Radiometer. The virtual constellation uses time-space-spectrum relationships from 2014 to 2018 and a random forest to produce synthetic NDVI imagery rectified to Landsat 8 format. Over the sample coverage area near Apalachicola, Florida, USA, the synthetic NDVI showed good visual coherence with observed Landsat 8 NDVI. Comparisons between the synthetic and observed NDVI showed Root Mean Squared Error and Coefficient of Determination (R2) values of 0.0020 sr−1 and 0.88, respectively. The results suggest that the virtual constellation was able to mitigate NDVI data loss due to clouds and may have the potential to do the same for other data. The ability to participate in a virtual constellation for a useful end product such as NDVI adds value to existing satellite missions and provides economic justification for future projects.


Agronomy ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 846
Author(s):  
Mbulisi Sibanda ◽  
Onisimo Mutanga ◽  
Timothy Dube ◽  
John Odindi ◽  
Paramu L. Mafongoya

Considering the high maize yield loses caused by incidences of disease, as well as incomprehensive monitoring initiatives in crop farming, there is a need for spatially explicit, cost-effective, and consistent approaches for monitoring, as well as for forecasting, food-crop diseases, such as maize Gray Leaf Spot. Such approaches are valuable in reducing the associated economic losses while fostering food security. In this study, we sought to investigate the utility of the forthcoming HyspIRI sensor in detecting disease progression of Maize Gray Leaf Spot infestation in relation to the Sentinel-2 MSI and Landsat 8 OLI spectral configurations simulated using proximally sensed data. Healthy, intermediate, and severe categories of maize crop infections by the Gray Leaf Spot disease were discriminated based on partial least squares–discriminant analysis (PLS-DA) algorithm. Comparatively, the results show that the HyspIRI’s simulated spectral settings slightly performed better than those of Sentinel-2 MSI, VENµS, and Landsat 8 OLI sensor. HyspIRI exhibited an overall accuracy of 0.98 compared to 0.95, 0.93, and 0.89, which were exhibited by Sentinel-2 MSI, VENµS, and Landsat 8 OLI sensor sensors, respectively. Furthermore, the results showed that the visible section, red-edge, and NIR covered by all the four sensors were the most influential spectral regions for discriminating different Maize Gray Leaf Spot infections. These findings underscore the potential value of the upcoming hyperspectral HyspIRI sensor in precision agriculture and forecasting of crop-disease epidemics, which are necessary to ensure food security.


2020 ◽  
Vol 12 (11) ◽  
pp. 1876 ◽  
Author(s):  
Katsuto Shimizu ◽  
Tetsuji Ota ◽  
Nobuya Mizoue ◽  
Hideki Saito

Developing accurate methods for estimating forest structures is essential for efficient forest management. The high spatial and temporal resolution data acquired by CubeSat satellites have desirable characteristics for mapping large-scale forest structural attributes. However, most studies have used a median composite or single image for analyses. The multi-temporal use of CubeSat data may improve prediction accuracy. This study evaluates the capabilities of PlanetScope CubeSat data to estimate canopy height derived from airborne Light Detection and Ranging (LiDAR) by comparing estimates using Sentinel-2 and Landsat 8 data. Random forest (RF) models using a single composite, multi-seasonal composites, and time-series data were investigated at different spatial resolutions of 3, 10, 20, and 30 m. The highest prediction accuracy was obtained by the PlanetScope multi-seasonal composites at 3 m (relative root mean squared error: 51.3%) and Sentinel-2 multi-seasonal composites at the other spatial resolutions (40.5%, 35.2%, and 34.2% for 10, 20, and 30 m, respectively). The results show that RF models using multi-seasonal composites are 1.4% more accurate than those using harmonic metrics from time-series data in the median. PlanetScope is recommended for canopy height mapping at finer spatial resolutions. However, the unique characteristics of PlanetScope data in a spatial and temporal context should be further investigated for operational forest monitoring.


2021 ◽  
Vol 54 (1) ◽  
pp. 182-208
Author(s):  
Sani M. Isa ◽  
Suharjito ◽  
Gede Putera Kusuma ◽  
Tjeng Wawan Cenggoro
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document