Why Not Replace Quantitative Risk Assessment Models with Regression Models?

Author(s):  
Louis Anthony Cox
2018 ◽  
Vol 46 (2) ◽  
pp. 185-209 ◽  
Author(s):  
Laurel Eckhouse ◽  
Kristian Lum ◽  
Cynthia Conti-Cook ◽  
Julie Ciccolini

Scholars in several fields, including quantitative methodologists, legal scholars, and theoretically oriented criminologists, have launched robust debates about the fairness of quantitative risk assessment. As the Supreme Court considers addressing constitutional questions on the issue, we propose a framework for understanding the relationships among these debates: layers of bias. In the top layer, we identify challenges to fairness within the risk-assessment models themselves. We explain types of statistical fairness and the tradeoffs between them. The second layer covers biases embedded in data. Using data from a racially biased criminal justice system can lead to unmeasurable biases in both risk scores and outcome measures. The final layer engages conceptual problems with risk models: Is it fair to make criminal justice decisions about individuals based on groups? We show that each layer depends on the layers below it: Without assurances about the foundational layers, the fairness of the top layers is irrelevant.


Risk Analysis ◽  
2011 ◽  
Vol 32 (3) ◽  
pp. 496-512 ◽  
Author(s):  
Suyi Li ◽  
Qiang Meng ◽  
Xiaobo Qu

Author(s):  
Emad Mohamed ◽  
Nima Gerami Seresht ◽  
Stephen Hague ◽  
Adam Chehouri ◽  
Simaan M. AbouRizk

Although many quantitative risk assessment models have been proposed in literature, their use in construction practice remain limited due to a lack of domain-specific models, tools, and application examples. This is especially true in wind farm construction, where the state-of-the-art integrated Monte Carlo simulation and critical path method (MCS-CPM) risk assessment approach has yet to be demonstrated. The present case study is the first reported application of the MCS-CPM method for risk assessment in wind farm construction and is the first case study to consider correlations between cost and schedule impacts of risk factors using copulas. MCS-CPM provided reasonable risk assessment results for a wind farm project, and its use in practice is recommended. Aimed at facilitating the practical application of quantitative risk assessment methods, this case study provides a much-needed analytical generalization of MCS-CPM, offering application examples, discussion of expected results, and recommendations to wind farm construction practitioners.


Author(s):  
Aleksandar Tomic ◽  
Shahani Kariyawasam

Risk Assessment is an integral part of an Integrity Management Program (IMP), and it is generally the first step in most IMPs. Risk is of the product of two variables, the likelihood of failure and the consequence of failure, where failure is defined as a loss of containment event. Hence, it is necessary to calculate both variables in order to accurately model risk. To assess risk, criterion need to be established and the actual risk needs to be compared to the criterion in order to determine the acceptability of risk. Currently, most industry risk assessment models are qualitative risk models, where consequence is generally characterized by class, relative population measures, or some other relative measure. While this may be adequate for some relative risk ranking purposes, it is generally not accurate in representing the true consequences and the arbitrary nature leads to overly conservative or overly un-conservative results. Conversely, Quantitative Risk Assessment (QRA) models take into account the effect of the thermal radiation due to ignited pipeline rupture and evaluate the consequence on the surrounding human population. Such a consequence model is dependent on the pipeline properties (i.e. diameter and MOP) and the structure properties (i.e. precise locations and types of structures). The overall risk is then represented by two specific, well defined measures: Individual Risk (IR) and Societal Risk (SR). The goal of this paper is to perform a critical review of IR and SR acceptability criteria that are widely available and widely used, and outline the criteria (and the approach) adapted by TransCanada Pipelines. Worldwide, there are several different standards that define the criteria for evaluating IR and SR, particularly some countries with higher population densities around pipelines (e.g. UK and Netherlands). These IR and SR criteria have been compared in a hypothetical case study, to determine the most appropriate method in terms of the assumptions for calculating risks, the criteria, and how the actual risks compares to the criteria. The outcome of this study was the adoption of a defendable process for calculating SR, along with the associated criterion.


2018 ◽  
Vol 19 (4) ◽  
pp. 356-363 ◽  
Author(s):  
Nijolė Batarlienė

Abstract The article provides information on transportation of dangerous freight. Legal acts regulating transportation of Dangerous freight are discussed. Major problems and non-compliances with The European Agreement concerning International Carriage of Dangerous Goods by Road (ADR) are distinguished. The type of risk that one encounters is analysed, as well as who is to take responsibility for transportation of dangerous freight. Transport accidents of dangerous substances are increasingly frequent and can cause serious injuries in inhabited areas or pollution of the environment. For quantitative risk assessment and mitigation planning, consequence calculations are necessary. The aim of this article is to present methods of the first approach for calculating costs and overall expenses of an accident and to demonstrate the main recommendations for the next development stage in the area of transport accident modelling. By the means of risk assessment models, it is possible to calculate the extent of the consequences and reduce the risks during the process of transportation. Based on Technology of Dangerous Freight Transportation, the accident calculation principles are suggested, which enables to assess the costs and to find a generalized accident rate. The calculation results are provided.


2016 ◽  
Vol 07 (01) ◽  
pp. 20-25
Author(s):  
I. Pabinger ◽  
C. Ay

SummaryVenous thromboembolism (VTE) in patients with cancer is associated with an increased morbidity and mortality, and its prevention is of major clinical importance. However, the VTE rates in the cancer population vary between 0.5% - 20%, depending on cancer-, treatment- and patient-related factors. The most important contributors to VTE risk are the tumor entity, stage and certain anticancer treatments. Cancer surgery represents a strong risk factor for VTE, and medical oncology patients are at increased risk of developing VTE, especially when receiving chemotherapy or immunomodulatory drugs. Also biomarkers have been investigated for their usefulness to predict risk of VTE (e.g. elevated leukocyte and platelet counts, soluble P-selectin, D-dimer, etc.). In order to identify cancer patients at high risk of VTE and to improve risk stratification, risk assessment models have been developed, which contain both clinical parameters and biomarkers. While primary thromboprophylaxis with lowmolecular- weight-heparin (LMWH) is recommended postoperatively for a period of up to 4 weeks after major cancer surgery, the evidence is less clear for medical oncology patients. Thromboprophylaxis in hospitalized medical oncology patients is advocated, and is based on results of randomized controlled trials which evaluated the efficacy and safety of LMWH for prevention of VTE in hospitalized medically ill patients. In recent trials the benefit of primary thromboprophylaxis in cancer patients receiving chemotherapy in the ambulatory setting has been investigated. However, at the present stage primary thromboprophylaxis for prevention of VTE in these patients is still a matter of debate and cannot be recommended for all cancer outpatients.


2020 ◽  
Vol 89 ◽  
pp. 8-19
Author(s):  
V. A. Minaev ◽  
◽  
N. G. Topolsky ◽  
A. O. Faddeev ◽  
R. O. Stepanov ◽  
...  

Introduction. The complex combination of natural and technogenic factors that lead to dangerous threats to the health and life of the population, as well as to material values, creates a need to develop special mathematical models for risk assessment in the relevant territories. Herewith it is important to take into account the significant differences between these factors. The new areas of research are models that describe natural and technogenic risks using differential equations that reflect different types of functions. The article presents the development of this research area. Goals and objectives. The goal of the article is to create a model for risk assessment in natural and technical systems (PTS), based on taking into account the influences of different natural and technogenic factors on them. Objectives include justification, construction and practical implementation of the mathematical model of risk assessment in the form of differential equations system. Methods include interpretation of the considered influences on PTS in terms of risks and assessment of the dynamic interaction of natural and technogenic factors in the form of inhomogeneous differential equations. Results and discussion. Solutions for models of assessing complex natural and technogenic risks in relation to two cases that differ in NTS are found: functionally different external natural and technogenic influences on PTS, which are understood as their type, in which the effects of both natural and technogenic factors are described by different mathematical functions. Conclusions. The first model considers parabolic (reflecting threats whose intensity gradually decreases with distance from the epicenter) and linear types of influences (reflecting sudden threats). The second model considers parabolic and hyperbolic (reflecting threats, the intensity of which decreases sharply over time) types of influences. It is concluded that it is necessary to create a special computer album of complex influences on the PTS in order to prevent "replay" of various situations and develop the most effective response to emerging dangers from the EMERCOM units and other structures. Key words: model, assessment, natural and technogenic risks, functionally different influences, counteraction, EMERCOM units.


2013 ◽  
Vol 19 (3) ◽  
pp. 521-527 ◽  
Author(s):  
Song YANG ◽  
Shuqin WU ◽  
Ningqiu LI ◽  
Cunbin SHI ◽  
Guocheng DENG ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document