A Perspective on the Frictional Properties of Soft Materials as Smart Applications

Author(s):  
Vinit Gupta ◽  
Arun K. Singh ◽  
Nitish Sinha ◽  
Kailas Wasewar
Nanoscale ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 2292-2308 ◽  
Author(s):  
Evangelos Liamas ◽  
Simon D. Connell ◽  
Shivaprakash N. Ramakrishna ◽  
Anwesha Sarkar

A knowledge gap exists in understanding nanoscale friction in soft–soft contacts with modulus <100 MPa, relevant to most biological interfaces.


2018 ◽  
Vol 91 (10) ◽  
pp. 365-369
Author(s):  
Mikihito TAKENAKA

Alloy Digest ◽  
1956 ◽  
Vol 5 (8) ◽  

Abstract FEDERATED No. 8 is a lead-base bearing alloy recommended for moderate to high speeds and moderate loads. It has very good frictional properties, reasonably good corrosion resistance and low price. This datasheet provides information on composition, physical properties, hardness, and tensile properties as well as fatigue. It also includes information on casting and joining. Filing Code: Pb-3. Producer or source: Federated Metals Corporation, ASARCO Inc..


Nanomaterials ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 15 ◽  
Author(s):  
Nikolay V. Perepelkin ◽  
Feodor M. Borodich ◽  
Alexander E. Kovalev ◽  
Stanislav N. Gorb

Classical methods of material testing become extremely complicated or impossible at micro-/nanoscale. At the same time, depth-sensing indentation (DSI) can be applied without much change at various length scales. However, interpretation of the DSI data needs to be done carefully, as length-scale dependent effects, such as adhesion, should be taken into account. This review paper is focused on different DSI approaches and factors that can lead to erroneous results, if conventional DSI methods are used for micro-/nanomechanical testing, or testing soft materials. We also review our recent advances in the development of a method that intrinsically takes adhesion effects in DSI into account: the Borodich–Galanov (BG) method, and its extended variant (eBG). The BG/eBG methods can be considered a framework made of the experimental part (DSI by means of spherical indenters), and the data processing part (data fitting based on the mathematical model of the experiment), with such distinctive features as intrinsic model-based account of adhesion, the ability to simultaneously estimate elastic and adhesive properties of materials, and non-destructive nature.


A description is given of the experimental technique devised to apply the method outlined theoretically in part I to the measurement of the dynamic compressive yield strength of various steels, duralumin, copper, lead, iron and silver. A polished piece of armour steel was employed as a target, and cylindrical specimens were fired at it at various measured velocities from Service weapons. The distance between the weapon and target was made short to ensure normal impact, and apparatus was devised for the precise measurement of striking velocity over this short range. The dynamic compressive yield strength was computed from the density of the specimen, the striking velocity, and from measurements of the dimensions of the test piece before and after test. Details are given of the accuracy of the various measurements, and of their effect on the values of yield strength. The method was found to be inaccurate at low and high velocities. For instance, with mild steel, satisfactory results were only obtainable within the range 400 to 2500 ft. /sec. The range of velocities within which satisfactory results could be obtained varied with the quality of the material tested, soft metals giving results within a much lower range than that necessary for harder materials. Because of its failure at low velocities, the method could not be employed to bridge the gap between static and dynamic tests. The rate of strain employed in the dynamic tests could not be measured, but was estimated to be of the order of 10,000 in. /in. /sec. With the materials tested little change of dynamic strength occurred within the range of striking velocities employed, probably because the rate of strain did not vary to any great extent with the striking velocity. Within the range of weapons available, that is, from a 0·303 in. rifle up to a 13 pdr. gun (calibre 3·12 in.), little change of dynamic strength occurred with alteration of the initial dimensions of the specimens, probably because the corresponding change of rate of strain was not large. In general, the dynamic compressive yield strength S was greater than the static strength Y represented by the compressive stress giving 0·2% permanent strain. For steels of various types, regardless of chemical composition and heat treatment, there was a relation between S / Y and the static strength Y , the ratio decreasing from approximately 3 when Y was 20 tons/sq. in. to 1 when Y was 120 tons/sq. in. A similar relation occurred with duralumin, S / Y varying from 2·5 at Y = 8 tons/sq. in. to 1·4 at Y = 25 tons/sq. in. Dynamic compressive yield values were obtained for soft materials such as pure lead, copper and Armco iron, which, under static conditions, gave no definite yield values. A plot of the unstrained length of the specimen X , expressed as X / L (where L = initial overall length), versus the final overall length L 1 , expressed as L 1 / L , was made for the various materials. Any specified value of X / L was associated with greater values of L 1 / L for the more ductile materials, such as copper and lead, than for the brittle materials, such as armour plate and duralumin.


2021 ◽  
Vol 23 (4) ◽  
Author(s):  
Stefan Luding ◽  
Yimin Jiang ◽  
Mario Liu

Abstract Jamming/un-jamming, the transition between solid- and fluid-like behavior in granular matter, is an ubiquitous phenomenon in need of a sound understanding. As argued here, in addition to the usual un-jamming by vanishing pressure due to a decrease of density, there is also yield (plastic rearrangements and un-jamming that occur) if, e.g., for given pressure, the shear stress becomes too large. Similar to the van der Waals transition between vapor and water, or the critical current in superconductors, we believe that one mechanism causing yield is by the loss of the energy’s convexity (causing irreversible re-arrangements of the micro-structure, either locally or globally). We focus on this mechanism in the context of granular solid hydrodynamics (GSH), generalized for very soft materials, i.e., large elastic deformations, employing it in an over-simplified (bottom-up) fashion by setting as many parameters as possible to constant. Also, we complemented/completed GSH by using various insights/observations from particle simulations and calibrating some of the theoretical parameters—both continuum and particle points of view are reviewed in the context of the research developments during the last few years. Any other energy-based elastic-plastic theory that is properly calibrated (top-down), by experimental or numerical data, would describe granular solids. But only if it would cover granular gas, fluid, and solid states simultaneously (as GSH does) could it follow the system transitions and evolution through all states into un-jammed, possibly dynamic/collisional states—and back to elastically stable ones. We show how the un-jamming dynamics starts off, unfolds, develops, and ends. We follow the system through various deformation modes: transitions, yielding, un-jamming and jamming, both analytically and numerically and bring together the material point continuum model with particle simulations, quantitatively. Graphic abstract


Author(s):  
Nanqi Bao ◽  
Jake Gold ◽  
Tibor Szilvasi ◽  
Huaizhe Yu ◽  
Robert Twieg ◽  
...  

Computational methods can provide first-principles insights into the thermochemistry and kinetics of reactions at interfaces, but this capability has not been widely leveraged to design soft materials that respond selectively...


2000 ◽  
Vol 23 (1) ◽  
pp. 1-28
Author(s):  
L. Lucchetti ◽  
F. Simoni

Sign in / Sign up

Export Citation Format

Share Document