biological interfaces
Recently Published Documents


TOTAL DOCUMENTS

127
(FIVE YEARS 24)

H-INDEX

25
(FIVE YEARS 3)

Author(s):  
Huanhui Wang ◽  
Xuena Li ◽  
Maocheng Li ◽  
Shuangqing Wang ◽  
Along Zuo ◽  
...  

Author(s):  
Gergo Peter Szekeres ◽  
Kevin Pagel ◽  
Zsuzsanna Heiner

AbstractThe analysis of glycosaminoglycans (GAGs) is a challenging task due to their high structural heterogeneity, which results in diverse GAG chains with similar chemical properties. Simultaneously, it is of high importance to understand their role and behavior in biological systems. It has been known for decades now that GAGs can interact with lipid molecules and thus contribute to the onset of atherosclerosis, but their interactions at and with biological interfaces, such as the cell membrane, are yet to be revealed. Here, analytical approaches that could yield important knowledge on the GAG-cell membrane interactions as well as the synthetic and analytical advances that make their study possible are discussed. Due to recent developments in laser technology, we particularly focus on nonlinear spectroscopic methods, especially vibrational sum-frequency generation spectroscopy, which has the potential to unravel the structural complexity of heterogeneous biological interfaces in contact with GAGs, in situ and in real time. Graphical abstract


Chemosensors ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 212
Author(s):  
Gonzalo E. Fenoy ◽  
Omar Azzaroni ◽  
Wolfgang Knoll ◽  
Waldemar A. Marmisollé

Organic bioelectronics involves the connection of organic semiconductors with living organisms, organs, tissues, cells, membranes, proteins, and even small molecules. In recent years, this field has received great interest due to the development of all kinds of devices architectures, enabling the detection of several relevant biomarkers, the stimulation and sensing of cells and tissues, and the recording of electrophysiological signals, among others. In this review, we discuss recent functionalization approaches for PEDOT and PEDOT:PSS films with the aim of integrating biomolecules for the fabrication of bioelectronics platforms. As the choice of the strategy is determined by the conducting polymer synthesis method, initially PEDOT and PEDOT:PSS films preparation methods are presented. Later, a wide variety of PEDOT functionalization approaches are discussed, together with bioconjugation techniques to develop efficient organic-biological interfaces. Finally, and by making use of these approaches, the fabrication of different platforms towards organic bioelectronics devices is reviewed.


2021 ◽  
Vol 22 (12) ◽  
pp. 6177
Author(s):  
Zuoneng Wang ◽  
Qingyang Zhang ◽  
Carsten Mim

Over the last few years, cryo electron microscopy has become the most important method in structural biology. While 80% of deposited maps are from single particle analysis, electron tomography has grown to become the second most important method. In particular sub-tomogram averaging has matured as a method, delivering structures between 2 and 5 Å from complexes in cells as well as in vitro complexes. While this resolution range is not standard, novel developments point toward a promising future. Here, we provide a guide for the workflow from sample to structure to gain insight into this emerging field.


Author(s):  
Maurizio Manera

Though complexity science and chaos theory have become a common scientific divulgation theme, medical disciplines, and pathology in particular, still rely on a deterministic, reductionistic approach and still hesitate to fully appreciate the intrinsic complexity of living beings. Herein, complexity, chaos and thermodynamics are introduced with specific regard to biomedical sciences, then their interconnections and implications in environmental pathology are discussed, with particular regard to a morphopathological, image analysis-based approach to biological interfaces. Biomedical disciplines traditionally approach living organisms by dissecting them ideally down to the molecular level in order to gain information about possible molecule to molecule interactions, to derive their macroscopic behaviour. Given the complex and chaotic behaviour of living systems, this approach is extremely limited in terms of obtainable information and may lead to misinterpretation. Environmental pathology, as a multidisciplinary discipline, should grant privilege to an integrated, possibly systemic approach, prone to manage the complex and chaotic aspects characterizing living organisms. Ultimately, environmental pathology should be interested in improving the well-being of individuals and the population, and ideally the health of the entire ecosystem/biosphere and should not focus merely on single diseases, diseased organs/tissues, cells and/or molecules.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Guillaume Rapin ◽  
Nirvana Caballero ◽  
Iaroslav Gaponenko ◽  
Benedikt Ziegler ◽  
Audrey Rawleigh ◽  
...  

AbstractJuxtacellular interactions play an essential but still not fully understood role in both normal tissue development and tumour invasion. Using proliferating cell fronts as a model system, we explore the effects of cell–cell interactions on the geometry and dynamics of these one-dimensional biological interfaces. We observe two distinct scaling regimes of the steady state roughness of in-vitro propagating Rat1 fibroblast cell fronts, suggesting different hierarchies of interactions at sub-cell lengthscales and at a lengthscale of 2–10 cells. Pharmacological modulation significantly affects the proliferation speed of the cell fronts, and those modulators that promote cell mobility or division also lead to the most rapid evolution of cell front roughness. By comparing our experimental observations to numerical simulations of elastic cell fronts with purely short-range interactions, we demonstrate that the interactions at few-cell lengthscales play a key role. Our methodology provides a simple framework to measure and characterise the biological effects of such interactions, and could be useful in tumour phenotyping.


Author(s):  
Nasim Ganji ◽  
Geoffrey D. Bothun

Albumin restructuring yields an additional driving force for protein corona-modified nanoparticles to adhere to biological interfaces that can be revealed a priori by modeling adsorption kinetics.


Sign in / Sign up

Export Citation Format

Share Document