Mechanisms of Plant Defense and Trade-Offs Between Them: Bioanalytics in Chemistry and Biology

2022 ◽  
pp. 1-14
Author(s):  
Łukasz P. Haliński ◽  
Anna Topolewska ◽  
Piotr Stepnowski
Keyword(s):  
2020 ◽  
Author(s):  
Nicholas J Kooyers ◽  
Abigail Donofrio ◽  
Benjamin K Blackman ◽  
Liza M Holeski

Abstract Determining how adaptive combinations of traits arose requires understanding the prevalence and scope of genetic constraints. Frequently observed phenotypic correlations between plant growth, defenses, and/or reproductive timing have led researchers to suggest that pleiotropy or strong genetic linkage between variants affecting independent traits is pervasive. Alternatively, these correlations could arise via independent mutations in different genes for each trait and extensive correlational selection. Here we evaluate these alternatives by conducting a quantitative trait loci (QTL) mapping experiment involving a cross between 2 populations of common monkeyflower (Mimulus guttatus) that differ in growth rate as well as total concentration and arsenal composition of plant defense compounds, phenylpropanoid glycosides (PPGs). We find no evidence that pleiotropy underlies correlations between defense and growth rate. However, there is a strong genetic correlation between levels of total PPGs and flowering time that is largely attributable to a single shared QTL. While this result suggests a role for pleiotropy/close linkage, several other QTLs also contribute to variation in total PPGs. Additionally, divergent PPG arsenals are influenced by a number of smaller-effect QTLs that each underlie variation in 1 or 2 PPGs. This result indicates that chemical defense arsenals can be finely adapted to biotic environments despite sharing a common biochemical precursor. Together, our results show correlations between defense and life-history traits are influenced by pleiotropy or genetic linkage, but genetic constraints may have limited impact on future evolutionary responses, as a substantial proportion of variation in each trait is controlled by independent loci.


2020 ◽  
Vol 51 (1) ◽  
pp. 123-141
Author(s):  
James W. Dalling ◽  
Adam S. Davis ◽  
A. Elizabeth Arnold ◽  
Carolina Sarmiento ◽  
Paul-Camilo Zalamea

Plant defense theory explores how plants invest in defenses against natural enemies but has focused primarily on the traits expressed by juvenile and mature plants. Here we describe the diverse ways in which seeds are chemically and physically defended. We suggest that through associations with other traits, seeds are likely to exhibit defense syndromes that reflect constraints or trade-offs imposed by selection to attract dispersers, enable effective dispersal, ensure appropriate timing of seed germination, and enhance seedling performance. We draw attention to seed and reproductive traits that are analogous to defense traits in mature plants and describe how the effectiveness of defenses is likely to differ at pre- and postdispersal stages. We also highlight recent insights into the mutualistic and antagonistic interactions between seeds and microbial communities, including fungi and endohyphal bacteria, that can influence seed survival in the soil and subsequent seedling vigor.


2019 ◽  
Vol 109 (3) ◽  
pp. 332-346 ◽  
Author(s):  
Jennifer Lorang

Breeding disease-resistant plants is a critical, environmentally friendly component of any strategy to sustainably feed and clothe the 9.8 billion people expected to live on Earth by 2050. Here, I review current literature detailing plant defense responses as they relate to diverse biological outcomes; disease resistance, susceptibility, and establishment of mutualistic plant–microbial relationships. Of particular interest is the degree to which these outcomes are a function of plant-associated microorganisms’ lifestyles; biotrophic, hemibiotrophic, necrotrophic, or mutualistic. For the sake of brevity, necrotrophic pathogens and the necrotrophic phase of pathogenicity are emphasized in this review, with special attention given to the host-specific pathogens that exploit defense. Defense responses related to generalist necrotrophs and mutualists are discussed in the context of excellent reviews by others. In addition, host evolutionary trade-offs of disease resistance with other desirable traits are considered in the context of breeding for durable disease resistance.


2015 ◽  
Vol 58 ◽  
pp. 83-100 ◽  
Author(s):  
Selena Gimenez-Ibanez ◽  
Marta Boter ◽  
Roberto Solano

Jasmonates (JAs) are essential signalling molecules that co-ordinate the plant response to biotic and abiotic challenges, as well as co-ordinating several developmental processes. Huge progress has been made over the last decade in understanding the components and mechanisms that govern JA perception and signalling. The bioactive form of the hormone, (+)-7-iso-jasmonyl-l-isoleucine (JA-Ile), is perceived by the COI1–JAZ co-receptor complex. JASMONATE ZIM DOMAIN (JAZ) proteins also act as direct repressors of transcriptional activators such as MYC2. In the emerging picture of JA-Ile perception and signalling, COI1 operates as an E3 ubiquitin ligase that upon binding of JA-Ile targets JAZ repressors for degradation by the 26S proteasome, thereby derepressing transcription factors such as MYC2, which in turn activate JA-Ile-dependent transcriptional reprogramming. It is noteworthy that MYCs and different spliced variants of the JAZ proteins are involved in a negative regulatory feedback loop, which suggests a model that rapidly turns the transcriptional JA-Ile responses on and off and thereby avoids a detrimental overactivation of the pathway. This chapter highlights the most recent advances in our understanding of JA-Ile signalling, focusing on the latest repertoire of new targets of JAZ proteins to control different sets of JA-Ile-mediated responses, novel mechanisms of negative regulation of JA-Ile signalling, and hormonal cross-talk at the molecular level that ultimately determines plant adaptability and survival.


2012 ◽  
Vol 11 (3) ◽  
pp. 118-126 ◽  
Author(s):  
Olive Emil Wetter ◽  
Jürgen Wegge ◽  
Klaus Jonas ◽  
Klaus-Helmut Schmidt

In most work contexts, several performance goals coexist, and conflicts between them and trade-offs can occur. Our paper is the first to contrast a dual goal for speed and accuracy with a single goal for speed on the same task. The Sternberg paradigm (Experiment 1, n = 57) and the d2 test (Experiment 2, n = 19) were used as performance tasks. Speed measures and errors revealed in both experiments that dual as well as single goals increase performance by enhancing memory scanning. However, the single speed goal triggered a speed-accuracy trade-off, favoring speed over accuracy, whereas this was not the case with the dual goal. In difficult trials, dual goals slowed down scanning processes again so that errors could be prevented. This new finding is particularly relevant for security domains, where both aspects have to be managed simultaneously.


2007 ◽  
Vol 62 (9) ◽  
pp. 1073-1074 ◽  
Author(s):  
Kennon M. Sheldon ◽  
Melanie S. Sheldon ◽  
Charles P. Nichols

Sign in / Sign up

Export Citation Format

Share Document