Effect of Extrusion Process on Mechanical, Welding, and Corrosion Behaviour of 6XXX Series of Aluminium Alloys

Author(s):  
Mehmet Buğra Güner ◽  
Murat Konar ◽  
Görkem Özçelik ◽  
Tolga Demirkıran ◽  
Afife Binnaz Yoruç Hazar
2010 ◽  
Vol 24 (15n16) ◽  
pp. 2255-2260
Author(s):  
KA KI (KATIE) AU ◽  
MICHAEL HODGSON ◽  
TIMOTIUS PASANG ◽  
YU LUNG CHIU

The magnesium silicide precipitates in the 6XXX series alloy are the main components contributing to the heat treatable properties and T6 strength of the alloy, which is influenced by the size, morphology and distribution of this phase. During the extrusion process, the strength contributing phase, magnesium silicide is supposed to dissolve and form again in a controlled state during age hardening. Whereas the intermetallic AlFeSi phase has little if any influence on the strength, the β phase of this intermetallic is known to cause brittle fracture of this alloy, as opposed to the less detrimental, more equiaxed α phase formed during homogenisation. This study investigates the as-extruded 6060 and the more heavily alloyed 6261 aluminium alloys, as well as the subsequent heat treated forms to investigate the ageing conditions to optimise hardening and shorten age hardening times for higher cost effectiveness. The microstructure, texture and precipitate size and distributions were studied using optical microscopy, SEM, EBSD and DSC. SEM and EDAX results have indicated signs of evenly distributed α AlFeSi and β Magnesium Silicide precipitates. The phase responsible for hardening is believed to be the much smaller scaled β" magnesium silicide, requiring much higher resolution studies.


2016 ◽  
Vol 190 ◽  
pp. 92-103 ◽  
Author(s):  
S.K. Kairy ◽  
P.A. Rometsch ◽  
K. Diao ◽  
J.F. Nie ◽  
C.H.J. Davies ◽  
...  

2013 ◽  
Vol 554-557 ◽  
pp. 630-637 ◽  
Author(s):  
Martin Grüner ◽  
Marion Merklein

Aluminium alloys show a great potential for lightweight constructions due to their high strength and low density but the production of this material is very energy consuming. Also the recycling of aluminium alloys, e.g. chips from the milling process, shows different challenges. Beside contamination by cooling lubricant and oxidation of the surface of the chips the melting and rolling process for new semi finish products needs a high amount of energy. TEKKAYA shows a new approach for recycling of aluminium alloy chips by an extrusion process at elevated temperatures producing different kinds of profiles. A new idea is the production of components directly out of chips using severe plastic deformation for joining of the chips similar to the accumulative roll bonding process in sheet metal forming. In a first approach aluminium alloy chips out of a milling process were uniaxial compressed with different loads inside an axisymmetric tool installed in a universal testing machine. The compressed chip disks subsequently were tested with two experiments to gain information on their stability. First experiment is a disk compression test with the disk standing on its cylindrical surface, giving information on the stability perpendicular to the compression direction. Second experiment is a stacked disk compression test with three disks to investigate the stability parallel to compression direction. During all three tests force and displacement values are recorded by the universal testing machine. These data are also processed to calculate or identify input parameters for the numerical investigations. For numerical simulation ABAQUS in conjunction with the Drucker-Prager-Cap material model, which is often used for sintering processes, seems to be a good choice. By numerical simulation of the experiments and comparison with the experiments input parameters for the material model can be identified showing good accordance. This material model will be used in future numerical investigations of an extrusion process to identify tool geometries leading to high strains inside the material and by this to an increased stability of the parts.


2013 ◽  
Vol 585 ◽  
pp. 165-171 ◽  
Author(s):  
Stanka Tomovic-Petrovic ◽  
Rune Østhus ◽  
Ola Jensrud

Numerical analysis of the material flow during the extrusion process for high alloyed variants of the AA 6xxx series is presented in this paper. The analysis was performed by using the commercial FE code Forge2011®. Another issue considered in the paper was an interrelation between the die geometry and the critical extrusion process variables. For optimization of the die exit geometry, the model was produced with the use of linked equation in SolidWorks® combined with Mode FRONTIER. Several extrusion trials were performed to provide a basis for the verification of simulation results as extrusion temperature, speed and force. For the purpose, rods of a model alloy designated as AlMgSi4, based on an industrial AA6082 aluminium alloy with significantly higher silicon content, were extruded. A good correlation between measured and calculated results was obtained. This approach may enable simplifying when dealing with design of a new alloy.


2000 ◽  
Vol 6 (S2) ◽  
pp. 954-955
Author(s):  
Steven R. Claves ◽  
Wojciech Z. Misiolek ◽  
William H. Van Geertruyden ◽  
David B. Williams

Electron Backscattering Diffraction (EBSD) is an important tool for analyzing the crystal grain orientation of a microstructure and can be used to formulate conclusions about microtexture, texture determined from individual grains. This technique has been used to study a 6xxx series aluminum alloy's response to the deformation of the extrusion process. Extrusion is the process by which a billet of material is forced, under high pressure, through a die. The material undergoes a significant decrease in cross sectional area, and is formed into a shape equivalent to the geometry of the die orifice. Different bearing lands are shown in shown in Figure 1. These surfaces form the part, and are designed to control the metal flow making it uniform through the die, thus yielding good mechanical properties. This research was focused on the resultant microstructure. The shaded regions of Figure 2 show the two surface regions where EBSD measurements were taken.


2020 ◽  
Vol 1679 ◽  
pp. 042095
Author(s):  
I V Dubova ◽  
T R Gilmanshina ◽  
N V Vasyunina ◽  
G S Sanacheva ◽  
O V Chupriy

Sign in / Sign up

Export Citation Format

Share Document