A Deep Learning Model for Exercise-Based Rehabilitation Using Multi-channel Time-Series Data from a Single Wearable Sensor

Author(s):  
Ghanashyama Prabhu ◽  
Noel E. O’Connor ◽  
Kieran Moran
Mathematics ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 1078
Author(s):  
Ruxandra Stoean ◽  
Catalin Stoean ◽  
Miguel Atencia ◽  
Roberto Rodríguez-Labrada ◽  
Gonzalo Joya

Uncertainty quantification in deep learning models is especially important for the medical applications of this complex and successful type of neural architectures. One popular technique is Monte Carlo dropout that gives a sample output for a record, which can be measured statistically in terms of average probability and variance for each diagnostic class of the problem. The current paper puts forward a convolutional–long short-term memory network model with a Monte Carlo dropout layer for obtaining information regarding the model uncertainty for saccadic records of all patients. These are next used in assessing the uncertainty of the learning model at the higher level of sets of multiple records (i.e., registers) that are gathered for one patient case by the examining physician towards an accurate diagnosis. Means and standard deviations are additionally calculated for the Monte Carlo uncertainty estimates of groups of predictions. These serve as a new collection where a random forest model can perform both classification and ranking of variable importance. The approach is validated on a real-world problem of classifying electrooculography time series for an early detection of spinocerebellar ataxia 2 and reaches an accuracy of 88.59% in distinguishing between the three classes of patients.


2020 ◽  
Author(s):  
Zakhriya Alhassan ◽  
MATTHEW WATSON ◽  
David Budgen ◽  
Riyad Alshammari ◽  
Ali Alessan ◽  
...  

BACKGROUND Predicting the risk of glycated hemoglobin (HbA1c) elevation can help identify patients with the potential for developing serious chronic health problems such as diabetes and cardiovascular diseases. Early preventive interventions based upon advanced predictive models using electronic health records (EHR) data for such patients can ultimately help provide better health outcomes. OBJECTIVE Our study investigates the performance of predictive models to forecast HbA1c elevation levels by employing machine learning approaches using data from current and previous visits in the EHR systems for patients who had not been previously diagnosed with any type of diabetes. METHODS This study employed one statistical model and three commonly used conventional machine learning models, as well as a deep learning model, to predict patients’ current levels of HbA1c. For the deep learning model, we also integrated current visit data with historical (longitudinal) data from previous visits. Explainable machine learning methods were used to interrogate the models and have an understanding of the reasons behind the models' decisions. All models were trained and tested using a large and naturally balanced dataset from Saudi Arabia with 18,844 unique patient records. RESULTS The machine learning models achieved the best results for predicting current HbA1c elevation risk. The deep learning model outperformed the statistical and conventional machine learning models with respect to all reported measures when employing time-series data. The best performing model was the multi-layer perceptron (MLP) which achieved an accuracy of 74.52% when used with historical data. CONCLUSIONS This study shows that machine learning models can provide promising results for the task of predicting current HbA1c levels. For deep learning in particular, utilizing the patient's longitudinal time-series data improved the performance and affected the relative importance for the predictors used. The models showed robust results that were consistent with comparable studies.


Author(s):  
Cem Direkoglu ◽  
Melike Sah

AbstractIn December 2019, Covid-19 epidemic was identified in Wuhan, China. Covid-19 may cause fatality especially among elderly, and people with chronic health problems. After human to human transmissions of the disease, it has rapidly spread throughout China, and then the outbreak has reached to neighboring countries in Asia. Now, the spread of the virus is accelerating in the world, and increasing number of new cases has been reported daily in Europe, Middle East, Africa and America regions. Recently, World Health Organization (WHO) also announced Covid-19 as a Pandemic. As of 3 April, worldwide around more than 1 million cases and around 60,000 fatalities are reported. Thus, forecasting regional and worldwide outbreak size of Covid-19 is important in order to take necessary actions regarding to preparedness plans and mitigation interventions. In this work, we design a deep learning model, which is an effective artificial intelligence method, to provide regional and worldwide forecasts. Particularly for worldwide, our approach predicts the cumulative number of cases, cumulative number of deaths and daily new cases. For Europe and Middle East regions, we predict the cumulative number of cases, and for Mainland China we predict daily new cases and the cumulative number of deaths. We predict the next 10 days based on the previously reported actual time series data of Covid-19. For worldwide forecasts, we use the data provided by Worldometers. For Europe and Middle East forecasts, we use the data provided by World Health Organization, and for China Mainland forecasts, the data is obtained from Chinese Centre for Disease Control and Prevention. This is the first time that a deep learning model has been employed for Covid-19 spread prediction, solely based on the known reported cases of Covid-19. The proposed deep learning architecture consists of Long Short Term Memory (LSTM) layer, dropout layer, and fully connected layers to predict regional and worldwide forecasts. We evaluate our approach with Root Mean Square Error (RMSE) metric. For forecasting, we use the network models that give the minimum RMSE on the last 3 days of actual data. Networks, which achieves the minimum RMSE on the last 3 days, are used to predict the next 10 days. Every day, the spread and situations are changing. Our approach can take into account these realtime changes; the deep learning model can be re-trained with new daily data and perform real-time forecasting. Results show that the proposed deep learning model is promising, it can predict possible scenarios regionally and globally for the spread of Covid-19.


2021 ◽  
Vol 6 (1) ◽  
pp. 45-51
Author(s):  
Ahmed Saied Elberawi ◽  
◽  
Mohamed Belal ◽  

Forecasting future values of time-series data is a critical task in many disciplines including financial planning and decision-making. Researchers and practitioners in statistics apply traditional statistical methods (such as ARMA, ARIMA, ES, and GARCH) for a long time with varying. accuracies. Deep learning provides more sophisticated and non-linear approximation that supersede traditional statistical methods in most cases. Deep learning methods require minimal features engineering compared to other methods; it adopts an end-to-end learning methodology. In addition, it can handle a huge amount of data and variables. Financial time series forecasting poses a challenge due to its high volatility and non-stationarity nature. This work presents a hybrid deep learning model based on recurrent neural network and Autoencoders techniques to forecast commodity materials' global prices. Results showbetter accuracy compared to traditional regression methods for short-term forecast horizons (1,2,3 and 7days).


Open Physics ◽  
2021 ◽  
Vol 19 (1) ◽  
pp. 360-374
Author(s):  
Yuan Pei ◽  
Lei Zhenglin ◽  
Zeng Qinghui ◽  
Wu Yixiao ◽  
Lu Yanli ◽  
...  

Abstract The load of the showcase is a nonlinear and unstable time series data, and the traditional forecasting method is not applicable. Deep learning algorithms are introduced to predict the load of the showcase. Based on the CEEMD–IPSO–LSTM combination algorithm, this paper builds a refrigerated display cabinet load forecasting model. Compared with the forecast results of other models, it finally proves that the CEEMD–IPSO–LSTM model has the highest load forecasting accuracy, and the model’s determination coefficient is 0.9105, which is obviously excellent. Compared with other models, the model constructed in this paper can predict the load of showcases, which can provide a reference for energy saving and consumption reduction of display cabinet.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Harjanto Prabowo ◽  
Alam A. Hidayat ◽  
Tjeng Wawan Cenggoro ◽  
Reza Rahutomo ◽  
Kartika Purwandari ◽  
...  

IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 120043-120065
Author(s):  
Kukjin Choi ◽  
Jihun Yi ◽  
Changhwa Park ◽  
Sungroh Yoon

2021 ◽  
Vol 13 (3) ◽  
pp. 67
Author(s):  
Eric Hitimana ◽  
Gaurav Bajpai ◽  
Richard Musabe ◽  
Louis Sibomana ◽  
Jayavel Kayalvizhi

Many countries worldwide face challenges in controlling building incidence prevention measures for fire disasters. The most critical issues are the localization, identification, detection of the room occupant. Internet of Things (IoT) along with machine learning proved the increase of the smartness of the building by providing real-time data acquisition using sensors and actuators for prediction mechanisms. This paper proposes the implementation of an IoT framework to capture indoor environmental parameters for occupancy multivariate time-series data. The application of the Long Short Term Memory (LSTM) Deep Learning algorithm is used to infer the knowledge of the presence of human beings. An experiment is conducted in an office room using multivariate time-series as predictors in the regression forecasting problem. The results obtained demonstrate that with the developed system it is possible to obtain, process, and store environmental information. The information collected was applied to the LSTM algorithm and compared with other machine learning algorithms. The compared algorithms are Support Vector Machine, Naïve Bayes Network, and Multilayer Perceptron Feed-Forward Network. The outcomes based on the parametric calibrations demonstrate that LSTM performs better in the context of the proposed application.


Sign in / Sign up

Export Citation Format

Share Document