scholarly journals Automated Termination Analysis of Polynomial Probabilistic Programs

Author(s):  
Marcel Moosbrugger ◽  
Ezio Bartocci ◽  
Joost-Pieter Katoen ◽  
Laura Kovács

AbstractThe termination behavior of probabilistic programs depends on the outcomes of random assignments. Almost sure termination (AST) is concerned with the question whether a program terminates with probability one on all possible inputs. Positive almost sure termination (PAST) focuses on termination in a finite expected number of steps. This paper presents a fully automated approach to the termination analysis of probabilistic while-programs whose guards and expressions are polynomial expressions. As proving (positive) AST is undecidable in general, existing proof rules typically provide sufficient conditions. These conditions mostly involve constraints on supermartingales. We consider four proof rules from the literature and extend these with generalizations of existing proof rules for (P)AST. We automate the resulting set of proof rules by effectively computing asymptotic bounds on polynomials over the program variables. These bounds are used to decide the sufficient conditions – including the constraints on supermartingales – of a proof rule. Our software tool Amber can thus check AST, PAST, as well as their negations for a large class of polynomial probabilistic programs, while carrying out the termination reasoning fully with polynomial witnesses. Experimental results show the merits of our generalized proof rules and demonstrate that Amber can handle probabilistic programs that are out of reach for other state-of-the-art tools.

2010 ◽  
Vol 19 (04) ◽  
pp. 511-529 ◽  
Author(s):  
YOUSSEF HAMADI ◽  
SAÏD JABBOUR ◽  
LAKHDAR SAÏS

This paper presents an original dynamic subsumption technique for Boolean CNF formulae. It exploits simple and sufficient conditions to detect, during conflict analysis, clauses from the formula that can be reduced by subsumption. During the learnt clause derivation, and at each step of the associated resolution process, checks for backward subsumption between the current resolvent and clauses from the original formula are efficiently performed. The resulting method allows the dynamic removal of literals from the original clauses. Experimental results show that the integration of our dynamic subsumption technique within the state-of-the-art SAT solvers Minisat and Rsat particularly benefits to crafted problems.


2020 ◽  
Vol 8 (1) ◽  
pp. 33-41
Author(s):  
Dr. S. Sarika ◽  

Phishing is a malicious and deliberate act of sending counterfeit messages or mimicking a webpage. The goal is either to steal sensitive credentials like login information and credit card details or to install malware on a victim’s machine. Browser-based cyber threats have become one of the biggest concerns in networked architectures. The most prolific form of browser attack is tabnabbing which happens in inactive browser tabs. In a tabnabbing attack, a fake page disguises itself as a genuine page to steal data. This paper presents a multi agent based tabnabbing detection technique. The method detects heuristic changes in a webpage when a tabnabbing attack happens and give a warning to the user. Experimental results show that the method performs better when compared with state of the art tabnabbing detection techniques.


Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 325
Author(s):  
Zhihao Wu ◽  
Baopeng Zhang ◽  
Tianchen Zhou ◽  
Yan Li ◽  
Jianping Fan

In this paper, we developed a practical approach for automatic detection of discrimination actions from social images. Firstly, an image set is established, in which various discrimination actions and relations are manually labeled. To the best of our knowledge, this is the first work to create a dataset for discrimination action recognition and relationship identification. Secondly, a practical approach is developed to achieve automatic detection and identification of discrimination actions and relationships from social images. Thirdly, the task of relationship identification is seamlessly integrated with the task of discrimination action recognition into one single network called the Co-operative Visual Translation Embedding++ network (CVTransE++). We also compared our proposed method with numerous state-of-the-art methods, and our experimental results demonstrated that our proposed methods can significantly outperform state-of-the-art approaches.


Author(s):  
Hussein Mohammed ◽  
Volker Märgner ◽  
Giovanni Ciotti

AbstractAutomatic pattern detection has become increasingly important for scholars in the humanities as the number of manuscripts that have been digitised has grown. Most of the state-of-the-art methods used for pattern detection depend on the availability of a large number of training samples, which are typically not available in the humanities as they involve tedious manual annotation by researchers (e.g. marking the location and size of words, drawings, seals and so on). This makes the applicability of such methods very limited within the field of manuscript research. We propose a learning-free approach based on a state-of-the-art Naïve Bayes Nearest-Neighbour classifier for the task of pattern detection in manuscript images. The method has already been successfully applied to an actual research question from South Asian studies about palm-leaf manuscripts. Furthermore, state-of-the-art results have been achieved on two extremely challenging datasets, namely the AMADI_LontarSet dataset of handwriting on palm leaves for word-spotting and the DocExplore dataset of medieval manuscripts for pattern detection. A performance analysis is provided as well in order to facilitate later comparisons by other researchers. Finally, an easy-to-use implementation of the proposed method is developed as a software tool and made freely available.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Changyong Li ◽  
Yongxian Fan ◽  
Xiaodong Cai

Abstract Background With the development of deep learning (DL), more and more methods based on deep learning are proposed and achieve state-of-the-art performance in biomedical image segmentation. However, these methods are usually complex and require the support of powerful computing resources. According to the actual situation, it is impractical that we use huge computing resources in clinical situations. Thus, it is significant to develop accurate DL based biomedical image segmentation methods which depend on resources-constraint computing. Results A lightweight and multiscale network called PyConvU-Net is proposed to potentially work with low-resources computing. Through strictly controlled experiments, PyConvU-Net predictions have a good performance on three biomedical image segmentation tasks with the fewest parameters. Conclusions Our experimental results preliminarily demonstrate the potential of proposed PyConvU-Net in biomedical image segmentation with resources-constraint computing.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Mehdi Srifi ◽  
Ahmed Oussous ◽  
Ayoub Ait Lahcen ◽  
Salma Mouline

AbstractVarious recommender systems (RSs) have been developed over recent years, and many of them have concentrated on English content. Thus, the majority of RSs from the literature were compared on English content. However, the research investigations about RSs when using contents in other languages such as Arabic are minimal. The researchers still neglect the field of Arabic RSs. Therefore, we aim through this study to fill this research gap by leveraging the benefit of recent advances in the English RSs field. Our main goal is to investigate recent RSs in an Arabic context. For that, we firstly selected five state-of-the-art RSs devoted originally to English content, and then we empirically evaluated their performance on Arabic content. As a result of this work, we first build four publicly available large-scale Arabic datasets for recommendation purposes. Second, various text preprocessing techniques have been provided for preparing the constructed datasets. Third, our investigation derived well-argued conclusions about the usage of modern RSs in the Arabic context. The experimental results proved that these systems ensure high performance when applied to Arabic content.


2019 ◽  
Vol 9 (13) ◽  
pp. 2684 ◽  
Author(s):  
Hongyang Li ◽  
Lizhuang Liu ◽  
Zhenqi Han ◽  
Dan Zhao

Peeling fibre is an indispensable process in the production of preserved Szechuan pickle, the accuracy of which can significantly influence the quality of the products, and thus the contour method of fibre detection, as a core algorithm of the automatic peeling device, is studied. The fibre contour is a kind of non-salient contour, characterized by big intra-class differences and small inter-class differences, meaning that the feature of the contour is not discriminative. The method called dilated-holistically-nested edge detection (Dilated-HED) is proposed to detect the fibre contour, which is built based on the HED network and dilated convolution. The experimental results for our dataset show that the Pixel Accuracy (PA) is 99.52% and the Mean Intersection over Union (MIoU) is 49.99%, achieving state-of-the-art performance.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Tao Xiang ◽  
Tao Li ◽  
Mao Ye ◽  
Zijian Liu

Pedestrian detection with large intraclass variations is still a challenging task in computer vision. In this paper, we propose a novel pedestrian detection method based on Random Forest. Firstly, we generate a few local templates with different sizes and different locations in positive exemplars. Then, the Random Forest is built whose splitting functions are optimized by maximizing class purity of matching the local templates to the training samples, respectively. To improve the classification accuracy, we adopt a boosting-like algorithm to update the weights of the training samples in a layer-wise fashion. During detection, the trained Random Forest will vote the category when a sliding window is input. Our contributions are the splitting functions based on local template matching with adaptive size and location and iteratively weight updating method. We evaluate the proposed method on 2 well-known challenging datasets: TUD pedestrians and INRIA pedestrians. The experimental results demonstrate that our method achieves state-of-the-art or competitive performance.


1996 ◽  
Vol 16 (5) ◽  
pp. 1087-1100
Author(s):  
Eric Slud ◽  
Daniel Chambers

abstractNecessary and sufficient analytical conditions are given for homogeneous multiple Wiener-Itô integral processes (MWIs) to be mixing, and sufficient conditions are given for mixing of general square-integrable Gaussian-subordinated processes. It is shown that every finite or infinite sum Y of MWIs (i.e. every real square-integrable stationary polynomial form in the variables of an underlying weakly mixing Gaussian process) is mixing if the process defined separately by each homogeneous-order term is mixing, and that this condition is necessary for a large class of Gaussian-subordinated processes. Moreover, for homogeneous MWIs Y1, for sums of MWIs of order ≤ 3, and for a large class of square-integrable infinite sums Y1, of MWIs, mixing holds if and only if Y2 has correlation-function decaying to zero for large lags. Several examples of the criteria for mixing are given, including a second-order homogeneous MWI, i.e. a degree two polynomial form, orthogonal to all linear forms, which has auto-correlations tending to zero for large lags but is not mixing.


Sign in / Sign up

Export Citation Format

Share Document