scholarly journals Circular Business Models Identification

Author(s):  
Paolo Rosa ◽  
Claudio Sassanelli ◽  
Sergio Terzi

AbstractThe main objective of FENIX is demonstrating the benefits coming from the adoption of CE practices through a set of circular business models adequately configured within the project. These CBMs have been selected basing on the three use cases requirements pertaining to different industrial streams (metal powders, 3D-printed jewels and advanced filaments for 3D printing applications). The chapter starts with a literature assessment of both current CBMs and current CBM classification methods. Subsequently, existing CBMs have been mapped basing on the most common classification method (i.e. the ReSOLVE framework), evidencing the most suitable CBMs to be adopted in FENIX. In parallel, a literature assessment of industrial benefits expected from the adoption of CE practices have been implemented. Subsequently, FENIX industrial partners have been interviewed in order to select the most relevant benefits expected from the project. A final comparison of available CBMs and expected benefits allowed to select the most suitable CBMs to be demonstrated in FENIX.

2021 ◽  
Author(s):  
Soo Young Cho ◽  
Dong Hae Ho ◽  
Yoon Young Choi ◽  
Soomook Lim ◽  
Sungjoo Lee ◽  
...  

Abstract Recent advances in metal additive manufacturing (AM) have provided new opportunities for the design of prototypes of metal-based products and personalization of products for the fourth industrial revolution. Although metal AM, which enables fabrication of varied and sophisticated objects, is in the spotlight as a next-generation printing method, environmental issues arising during the printing process need to be addressed before it can be commercialized. Here, we demonstrate a novel mechanism for binder jetting three-dimensional (3D) printing of metals that is based on chelation triggered by an eco-friendly binding agent. Sodium salts of fruit acid chelators are used to form stable metal-chelate bridges between metal particles, which enable elaborate metal 3D printing. The strength of the 3D-printed object is improved by post-treatment, through a reduction in the porosity between the metal particles. Finally, the compatibility of the novel printing mechanism with a variety of metals is demonstrated via successful 3D printing of objects of various shapes using various metal powders. The proposed mechanism for metal 3D printing is expected to open up new avenues for the development of domestic-scale desktop 3D printing of metals.


2019 ◽  
Vol 10 (1) ◽  
pp. 23-40 ◽  
Author(s):  
Klaus HEINE ◽  
Shu LI

AbstractThis article contributes to the discussion about proper product safety in the wake of disruptive digital technologies. By picking the example of 3D printing we analyse why incumbent product liability law does not incentivise optimal deterrence of harmful 3D printed products. We identify the new business models associated with 3D printing as the main trigger for the non-applicability of incumbent liability law. The new business models are characterised by making no strong reference to economies of scale. As a result, the informational content of specific producers and their products is scarce and the identification of tortfeasors becomes a challenge for the legal system. While there is yet no easy solution to the problem, we provide at the end of the article an inventory of institutions that may take the lead in finding new proper liability rules and safety regulations.


2009 ◽  
Vol 38 (38) ◽  
pp. 119-130
Author(s):  
Erika Asnina

Use of Business Models within Model Driven Architecture Model Driven Architecture is a framework dedicated for development of large and complex computer systems. It states and implements the principle of architectural separation of concerns. This means that a system can be modeled from three different but related to each other viewpoints. The viewpoint discussed in this paper is a Computation Independent one. MDA specification states that a model that shows a system from this viewpoint is a business model. Taking into account transformations foreseen by MDA, it should be useful for automation of software development processes. This paper discusses an essence of the Computation Independent Model (CIM) and the place of business models in the computation independent modeling. This paper considers four types of business models, namely, SBVR, BPMN, use cases and Topological Functioning Model (TFM). Business persons use SBVR to define business vocabularies and business rules of the existing and planned domains, BPMN to define business processes of both existing and planned domains, and use cases to define business requirements to the planned domain. The TFM is used to define functionality of both existing and planned domains. This paper discusses their capabilities to be used as complete CIMs with formally defined conformity between planned and existing domains.


Author(s):  
Michael A. Luzuriaga ◽  
Danielle R. Berry ◽  
John C. Reagan ◽  
Ronald A. Smaldone ◽  
Jeremiah J. Gassensmith

Biodegradable polymer microneedle (MN) arrays are an emerging class of transdermal drug delivery devices that promise a painless and sanitary alternative to syringes; however, prototyping bespoke needle architectures is expensive and requires production of new master templates. Here, we present a new microfabrication technique for MNs using fused deposition modeling (FDM) 3D printing using polylactic acid, an FDA approved, renewable, biodegradable, thermoplastic material. We show how this natural degradability can be exploited to overcome a key challenge of FDM 3D printing, in particular the low resolution of these printers. We improved the feature size of the printed parts significantly by developing a post fabrication chemical etching protocol, which allowed us to access tip sizes as small as 1 μm. With 3D modeling software, various MN shapes were designed and printed rapidly with custom needle density, length, and shape. Scanning electron microscopy confirmed that our method resulted in needle tip sizes in the range of 1 – 55 µm, which could successfully penetrate and break off into porcine skin. We have also shown that these MNs have comparable mechanical strengths to currently fabricated MNs and we further demonstrated how the swellability of PLA can be exploited to load small molecule drugs and how its degradability in skin can release those small molecules over time.


2020 ◽  
Vol 16 ◽  
Author(s):  
Wei Liu ◽  
Shifeng Liu ◽  
Yunzhe Li ◽  
Peng Zhou ◽  
Qian ma

Abstract:: Surgery to repair damaged tissue, which is caused by disease or trauma, is being carried out all the time, and a desirable treatment is compelling need to regenerate damaged tissues to further improve the quality of human health. Therefore, more and more research focus on exploring the most suitable bionic design to enrich available treatment methods. 3D-printing, as an advanced materials processing approach, holds promising potential to create prototypes with complex constructs that could reproduce primitive tissues and organs as much as possible or provide appropriate cell-material interfaces. In a sense, 3D printing promises to bridge between tissue engineering and bionic design, which can provide an unprecedented personalized recapitulation with biomimetic function under the precise control of the composition and spatial distribution of cells and biomaterials. This article describes recent progress in 3D bionic design and the potential application prospect of 3D printing regenerative medicine including 3D printing biomimetic scaffolds and 3D cell printing in tissue engineering.


Author(s):  
Juan Sebastian Cuellar ◽  
Dick Plettenburg ◽  
Amir A Zadpoor ◽  
Paul Breedveld ◽  
Gerwin Smit

Various upper-limb prostheses have been designed for 3D printing but only a few of them are based on bio-inspired design principles and many anatomical details are not typically incorporated even though 3D printing offers advantages that facilitate the application of such design principles. We therefore aimed to apply a bio-inspired approach to the design and fabrication of articulated fingers for a new type of 3D printed hand prosthesis that is body-powered and complies with basic user requirements. We first studied the biological structure of human fingers and their movement control mechanisms in order to devise the transmission and actuation system. A number of working principles were established and various simplifications were made to fabricate the hand prosthesis using a fused deposition modelling (FDM) 3D printer with dual material extrusion. We then evaluated the mechanical performance of the prosthetic device by measuring its ability to exert pinch forces and the energy dissipated during each operational cycle. We fabricated our prototypes using three polymeric materials including PLA, TPU, and Nylon. The total weight of the prosthesis was 92 g with a total material cost of 12 US dollars. The energy dissipated during each cycle was 0.380 Nm with a pinch force of ≈16 N corresponding to an input force of 100 N. The hand is actuated by a conventional pulling cable used in BP prostheses. It is connected to a shoulder strap at one end and to the coupling of the whiffle tree mechanism at the other end. The whiffle tree mechanism distributes the force to the four tendons, which bend all fingers simultaneously when pulled. The design described in this manuscript demonstrates several bio-inspired design features and is capable of performing different grasping patterns due to the adaptive grasping provided by the articulated fingers. The pinch force obtained is superior to other fully 3D printed body-powered hand prostheses, but still below that of conventional body powered hand prostheses. We present a 3D printed bio-inspired prosthetic hand that is body-powered and includes all of the following characteristics: adaptive grasping, articulated fingers, and minimized post-printing assembly. Additionally, the low cost and low weight make this prosthetic hand a worthy option mainly in locations where state-of-the-art prosthetic workshops are absent.


2019 ◽  
Vol 24 (2) ◽  
pp. 254-270 ◽  
Author(s):  
Luke Heemsbergen ◽  
Angela Daly ◽  
Jiajie Lu ◽  
Thomas Birtchnell

This article outlines preliminary findings from a futures forecasting exercise where participants in Shenzhen and Singapore considered the socio-technological construction of 3D printing in terms of work and social change. We offered participants ideal political-economic futures across local–global knowledge and capital–commons dimensions, and then had them backcast the contextual waypoints across markets, culture, policy, law and technology dimensions that help guide towards each future. Their discussion identified various contextually sensitive points, but also tended to dismiss the farthest reaches of each proposed ideal, often reverting to familiar contextual signifiers. Here, we offer discussion on how participants saw culture and industry shaping futures for pertinent political economic concerns in the twenty-first century.


Proceedings ◽  
2020 ◽  
Vol 49 (1) ◽  
pp. 125
Author(s):  
Martino Colonna ◽  
Benno Zingerle ◽  
Maria Federica Parisi ◽  
Claudio Gioia ◽  
Alessandro Speranzoni ◽  
...  

The optimization of sport equipment parts requires considerable time and high costs due to the high complexity of the development process. For this reason, we have developed a novel approach to decrease the cost and time for the optimization of the design, which consists of producing a first prototype by 3D printing, applying the forces that normally acts during the sport activity using a test bench, and then measuring the local deformations using 3D digital image correlation (DIC). The design parameters are then modified by topological optimization and then DIC is performed again on the new 3D-printed modified part. The DIC analysis of 3D-printed parts has shown a good agreement with that of the injection-molded ones. The deformation measured with DIC are also well correlated with those provided by finite element method (FEM) analysis, and therefore DIC analysis proves to be a powerful tool to validate FEM models.


2021 ◽  
Vol 13 (3) ◽  
pp. 355
Author(s):  
Weixian Tan ◽  
Borong Sun ◽  
Chenyu Xiao ◽  
Pingping Huang ◽  
Wei Xu ◽  
...  

Classification based on polarimetric synthetic aperture radar (PolSAR) images is an emerging technology, and recent years have seen the introduction of various classification methods that have been proven to be effective to identify typical features of many terrain types. Among the many regions of the study, the Hunshandake Sandy Land in Inner Mongolia, China stands out for its vast area of sandy land, variety of ground objects, and intricate structure, with more irregular characteristics than conventional land cover. Accounting for the particular surface features of the Hunshandake Sandy Land, an unsupervised classification method based on new decomposition and large-scale spectral clustering with superpixels (ND-LSC) is proposed in this study. Firstly, the polarization scattering parameters are extracted through a new decomposition, rather than other decomposition approaches, which gives rise to more accurate feature vector estimate. Secondly, a large-scale spectral clustering is applied as appropriate to meet the massive land and complex terrain. More specifically, this involves a beginning sub-step of superpixels generation via the Adaptive Simple Linear Iterative Clustering (ASLIC) algorithm when the feature vector combined with the spatial coordinate information are employed as input, and subsequently a sub-step of representative points selection as well as bipartite graph formation, followed by the spectral clustering algorithm to complete the classification task. Finally, testing and analysis are conducted on the RADARSAT-2 fully PolSAR dataset acquired over the Hunshandake Sandy Land in 2016. Both qualitative and quantitative experiments compared with several classification methods are conducted to show that proposed method can significantly improve performance on classification.


Sign in / Sign up

Export Citation Format

Share Document