Biomimetic Design of 3D Printed Tissue-engineered bone Constructs

2020 ◽  
Vol 16 ◽  
Author(s):  
Wei Liu ◽  
Shifeng Liu ◽  
Yunzhe Li ◽  
Peng Zhou ◽  
Qian ma

Abstract:: Surgery to repair damaged tissue, which is caused by disease or trauma, is being carried out all the time, and a desirable treatment is compelling need to regenerate damaged tissues to further improve the quality of human health. Therefore, more and more research focus on exploring the most suitable bionic design to enrich available treatment methods. 3D-printing, as an advanced materials processing approach, holds promising potential to create prototypes with complex constructs that could reproduce primitive tissues and organs as much as possible or provide appropriate cell-material interfaces. In a sense, 3D printing promises to bridge between tissue engineering and bionic design, which can provide an unprecedented personalized recapitulation with biomimetic function under the precise control of the composition and spatial distribution of cells and biomaterials. This article describes recent progress in 3D bionic design and the potential application prospect of 3D printing regenerative medicine including 3D printing biomimetic scaffolds and 3D cell printing in tissue engineering.

Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 353
Author(s):  
Yanting Han ◽  
Qianqian Wei ◽  
Pengbo Chang ◽  
Kehui Hu ◽  
Oseweuba Valentine Okoro ◽  
...  

Hydroxyapatite (HA) and HA-based nanocomposites have been recognized as ideal biomaterials in hard tissue engineering because of their compositional similarity to bioapatite. However, the traditional HA-based nanocomposites fabrication techniques still limit the utilization of HA in bone, cartilage, dental, applications, and other fields. In recent years, three-dimensional (3D) printing has been shown to provide a fast, precise, controllable, and scalable fabrication approach for the synthesis of HA-based scaffolds. This review therefore explores available 3D printing technologies for the preparation of porous HA-based nanocomposites. In the present review, different 3D printed HA-based scaffolds composited with natural polymers and/or synthetic polymers are discussed. Furthermore, the desired properties of HA-based composites via 3D printing such as porosity, mechanical properties, biodegradability, and antibacterial properties are extensively explored. Lastly, the applications and the next generation of HA-based nanocomposites for tissue engineering are discussed.


2020 ◽  
Vol 6 (1) ◽  
pp. 57-69
Author(s):  
Amirhosein Fathi ◽  
Farzad Kermani ◽  
Aliasghar Behnamghader ◽  
Sara Banijamali ◽  
Masoud Mozafari ◽  
...  

AbstractOver the last years, three-dimensional (3D) printing has been successfully applied to produce suitable substitutes for treating bone defects. In this work, 3D printed composite scaffolds of polycaprolactone (PCL) and strontium (Sr)- and cobalt (Co)-doped multi-component melt-derived bioactive glasses (BGs) were prepared for bone tissue engineering strategies. For this purpose, 30% of as-prepared BG particles (size <38 μm) were incorporated into PCL, and then the obtained composite mix was introduced into a 3D printing machine to fabricate layer-by-layer porous structures with the size of 12 × 12 × 2 mm3.The scaffolds were fully characterized through a series of physico-chemical and biological assays. Adding the BGs to PCL led to an improvement in the compressive strength of the fabricated scaffolds and increased their hydrophilicity. Furthermore, the PCL/BG scaffolds showed apatite-forming ability (i.e., bioactivity behavior) after being immersed in simulated body fluid (SBF). The in vitro cellular examinations revealed the cytocompatibility of the scaffolds and confirmed them as suitable substrates for the adhesion and proliferation of MG-63 osteosarcoma cells. In conclusion, 3D printed composite scaffolds made of PCL and Sr- and Co-doped BGs might be potentially-beneficial bone replacements, and the achieved results motivate further research on these materials.


Buildings ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 144
Author(s):  
Guillermo Sotorrío Ortega ◽  
Javier Alonso Madrid ◽  
Nils O. E. Olsson ◽  
José Antonio Tenorio Ríos

The construction industry has embraced digitisation and industrialisation in response to the need to increase its productivity, optimise material consumption and improve workmanship. Additive manufacturing (AM), more widely known as 3D printing, has driven substantial progress in these respects in other industries, and a number of national and international projects have helped to introduce the technique to the construction industry. As with other innovative processes not covered by uniform standards, appropriate assessments and testing methodologies to control the quality of the 3D-printed end products, while not obligatory, are advisable. This article shows that regulation is not an obstacle to the use of an innovative product, such as 3D printing, by proposing quality-control tests and an assessment methodology, in the understanding that standardisation ensures the viability of a technology. The information, including the methods and results, is based on the authors’ experiences in the development of three research projects pertaining to 3D printing. This paper also discusses whether the performance of the materials used in 3D printing could be superior to traditional ones.


Author(s):  
Yifan Yang ◽  
Yutaka Ohtake ◽  
Hiromasa Suzuki

Abstract Making arts and crafts is an essential application of 3D printing. However, typically, 3D printers have limited resolution; thus, the perceptual quality of the result is always low, mainly when the input mesh is a relief. To address this problem using existing 3D printing technology, we only operate the shape of the input triangle mesh. To improve the perceptual quality of a 3D printed product, we propose an integrated mesh processing that comprises feature extraction, 3D print preview, feature preservation test, and shape enhancement. The proposed method can identify and enlarge features that need to be enhanced without large-scale deformation. Besides, to improve ease of use, intermediate processes are visualized via user interfaces. To evaluate the proposed method, the processed triangle meshes are 3D printed. The effectiveness of the proposed approach is confirmed by comparing photographs of the original 3D prints and the enhanced 3D prints.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Xiaoming Li ◽  
Rongrong Cui ◽  
Lianwen Sun ◽  
Katerina E. Aifantis ◽  
Yubo Fan ◽  
...  

3D printing technology has recently gained substantial interest for potential applications in tissue engineering due to the ability of making a three-dimensional object of virtually any shape from a digital model. 3D-printed biopolymers, which combine the 3D printing technology and biopolymers, have shown great potential in tissue engineering applications and are receiving significant attention, which has resulted in the development of numerous research programs regarding the material systems which are available for 3D printing. This review focuses on recent advances in the development of biopolymer materials, including natural biopolymer-based materials and synthetic biopolymer-based materials prepared using 3D printing technology, and some future challenges and applications of this technology are discussed.


Author(s):  
Ming-You Shie ◽  
Wen-Ching Chang ◽  
Li-Ju Wei ◽  
Yu-Hsin Huang ◽  
Chien-Han Chen ◽  
...  

Diseases in articular cartilages have affected millions of people globally. Although the biochemical and cellular composition of articular cartilages is relatively simple, there is the limitation in self-repair ability of cartilage. Therefore, developing the strategies for cartilage repair is very important. Here, we reported a new manufacturing process of water-based polyurethane based photosensitive materials with hyaluronic acid and applied the materials for 3D printed customized cartilage scaffolds. The scaffold has high cytocompatibility and is one that closely mimics the mechanical properties of articular cartilages. It is suitable for culturing human Wharton's jelly mesenchymal stem cells (hWJMSCs) and the cells showed an excellent chondrogenic differentiation capacity. We consider that the 3D printing hybrid scaffolds may have potential in customized tissue engineering and facilitate the development of cartilage tissue engineering.


Author(s):  
Hyeongjin Lee ◽  
YoungWon Koo ◽  
Miji Yeo ◽  
SuHon Kim ◽  
Geun Hyung Kim

 Three-dimensional (3D) printing in tissue engineering has been studied for the bio mimicry of the structures of human tissues and organs. Now it is being applied to 3D cell printing, which can position cells and biomaterials, such as growth factors, at desired positions in the 3D space. However, there are some challenges of 3D cell printing, such as cell damage during the printing process and the inability to produce a porous 3D shape owing to the embedding of cells in the hydrogel-based printing ink, which should be biocompatible, biodegradable, and non-toxic, etc. Therefore, researchers have been studying ways to balance or enhance the post-print cell viability and the print-ability of 3D cell printing technologies by accommodating several mechanical, electrical, and chemical based systems. In this mini-review, several common 3D cell printing methods and their modified applications are introduced for overcoming deficiencies of the cell printing process.


Author(s):  
Tuan Anh Tran

There is a gap between 3D Printing’s fast pace of development and the acceptance of 3D Printing technologies by other industries and applications. This hesitation comes mostly from unanswered questions about the consistency, reproducibility, and quality of 3D printed products. Although the list of excellent examples demonstrating its potential keeps expanding, a wide and thorough adoption of the technology requires crucial, yet currently missing elements including consensus standards, quality control procedures, and measuring methodologies. Progress in developing these elements, however, has been rather limited.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Dahua Zhang ◽  
Xiang Zhang

More and more people pay attention to the printing speed and quality of 3D printing tools. In order to understand whether the 3D printing rehabilitation brace can play a role in the treatment and repair of joint trauma, we used 3D printing technology to print the rehabilitation brace and compared with the traditional rehabilitation brace. The printed parts were analyzed in detail. The experimental results prove that the rehabilitation braces made by the two methods can play a role in the repair of joint trauma. However, 3D printed rehabilitation braces can better meet the needs of patients with detailed patient data in application. The braces are more suitable, and their production speed is about 35% faster than traditional methods. Through the survey of patients and doctors, it is found that the satisfaction of patients and doctors with printed braces is above 89%, while the satisfaction with traditionally made braces is only about 60%. This shows that the rehabilitation brace based on the Internet of Things 3D printing technology has a more significant role in the treatment and repair of joint trauma, and the effect is better.


2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Mohan Prasath Mani ◽  
Madeeha Sadia ◽  
Saravana Kumar Jaganathan ◽  
Ahmad Zahran Khudzari ◽  
Eko Supriyanto ◽  
...  

Abstract In tissue engineering, 3D printing is an important tool that uses biocompatible materials, cells, and supporting components to fabricate complex 3D printed constructs. This review focuses on the cytocompatibility characteristics of 3D printed constructs, made from different synthetic and natural materials. From the overview of this article, inkjet and extrusion-based 3D printing are widely used methods for fabricating 3D printed scaffolds for tissue engineering. This review highlights that scaffold prepared by both inkjet and extrusion-based 3D printing techniques showed significant impact on cell adherence, proliferation, and differentiation as evidenced by in vitro and in vivo studies. 3D printed constructs with growth factors (FGF-2, TGF-β1, or FGF-2/TGF-β1) enhance extracellular matrix (ECM), collagen I content, and high glycosaminoglycan (GAG) content for cell growth and bone formation. Similarly, the utilization of 3D printing in other tissue engineering applications cannot be belittled. In conclusion, it would be interesting to combine different 3D printing techniques to fabricate future 3D printed constructs for several tissue engineering applications.


Sign in / Sign up

Export Citation Format

Share Document