Roles of Cerebellum-Brainstem Loops in Predictive Optokinetic Eye Velocity Control in Fish, Mice, and Humans

2021 ◽  
pp. 183-198
Author(s):  
Yutaka Hirata
1989 ◽  
Vol 32 (3) ◽  
pp. 681-687 ◽  
Author(s):  
C. Formby ◽  
B. Albritton ◽  
I. M. Rivera

We describe preliminary attempts to fit a mathematical function to the slow-component eye velocity (SCV) over the time course of caloric-induced nystagmus. Initially, we consider a Weibull equation with three parameters. These parameters are estimated by a least-squares procedure to fit digitized SCV data. We present examples of SCV data and fitted curves to show how adjustments in the parameters of the model affect the fitted curve. The best fitting parameters are presented for curves fit to 120 warm caloric responses. The fitting parameters and the efficacy of the fitted curves are compared before and after the SCV data were smoothed to reduce response variability. We also consider a more flexible four-parameter Weibull equation that, for 98% of the smoothed caloric responses, yields fits that describe the data more precisely than a line through the mean. Finally, we consider advantages and problems in fitting the Weibull function to caloric data.


Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 6041
Author(s):  
Fredy A. Valenzuela ◽  
Reymundo Ramírez ◽  
Fermín Martínez ◽  
Onofre A. Morfín ◽  
Carlos E. Castañeda

A DC motor velocity control in feedback systems usually requires a velocity sensor, which increases the controller cost. Additionally, the velocity sensor used in industrial applications presents several disadvantages such as maintenance requirements and signal conditioning. In this work, we propose a robust velocity control scheme applied to a DC motor based on estimation strategies using a sliding-mode observer. This means that measurements with mechanical sensors are not required in the controller design. The proposed observer estimates the rotational velocity and load torque of the motor. The controller design applies the exact-linearization technique combined with the super-twisting algorithm to achieve robust performance in the closed-loop system. The controller validation was carried out by experimental tests using a workbench, which is composed of a control and data acquisition Digital Signal Proccessor board, a DC-DC electronic converter, an interface board for signals conditioning, and a DC electric generator connected to an adjustable resistive load. The simulation and experimental results show a significant performance of the proposed control scheme. During tests, the accuracy, robustness, and speed response on the controller were evaluated and the experimental results were compared with a classic proportional-integral controller, which uses a conventional encoder.


1995 ◽  
Vol 74 (3) ◽  
pp. 1367-1372 ◽  
Author(s):  
G. Cheron ◽  
S. Saussez ◽  
N. Gerrits ◽  
E. Godaux

1. Properties of nucleus incertus (NIC) neurons projecting to the cerebellar flocculus were studied in alert cats by using chronic unit and eye movement recording and antidromic activation. Projection of these neurons onto the flocculus was verified with retrograde transport of horseradish peroxidase after injections in the flocculus. 2. Bipolar stimulation electrodes were implanted into the "middle" zone of each flocculus because this zone is known to be involved in the control of horizontal eye movements. The dorsomedial aspect of the pontine tegmentum was explored with microelectrodes during stimulation of both flocculi. The majority of neurons antidromically activated from the flocculus were found in the caudal part of the NIC. 3. Of the 69 neurons activated from the flocculus, 44 were classified as burst-tonic (BT) neurons; 34 discharged in relation with horizontal movements of the eye, 10 in relation with vertical movements. Of the 14 remaining neurons, 6 were not related to eye movements and 8 were classified as burst neurons. The BT neurons of the NIC displayed a great sensitivity to both horizontal eye position and horizontal eye velocity. 4. This study demonstrates the presence of a new group of horizontal eye movement related BT neurons situated in the NIC. The fact that they project to the horizontal floccular zone emphasizes the importance of the functional specialization of the different Purkinje cell zones.


Sign in / Sign up

Export Citation Format

Share Document