Effect of Different Building Materials on Indoor Radon/Thoron and Associated Health Hazards

Author(s):  
Bhupender Singh ◽  
Maneesha Garg ◽  
Krishan Kant
2021 ◽  
Vol 900 (1) ◽  
pp. 012040
Author(s):  
E Singovszká ◽  
A Eštoková ◽  
M Vertaľ

Abstract It is known that the highest contribution to the yearly radiation dose for the population derives from natural radioactivity. About 50% of that is estimated to be caused by exposure to radon (Rn) and its products. Human exposure to indoor Rn is currently considered a relevant research topic, because of the associated epidemiological aspects. This paper aimed at Rn concentration measurement in a selected building in Košice city, Slovakia. The continuous monitoring of indoor radon levels was performed over a period of 40 days. The measured concentrations ranged in a wide interval up to 92 Bq/m3. The WHO limit value of 100 Bq/m3 wasn´t exceeded. Analysing the possible sources, both contributions of radon from the building materials and radon from the soil was observed.


Author(s):  
Alessandro F. Gualtieri ◽  
Magdalena Lassinantti Gualtieri ◽  
Valentina Scognamiglio ◽  
Dario Di Giuseppe

2019 ◽  
Vol 34 (2) ◽  
pp. 141-152 ◽  
Author(s):  
Wazir Muhammad ◽  
Matiullah ◽  
Asad Ullah ◽  
Sajjad Tahir ◽  
Fawad Ullah ◽  
...  

Abstract In our environment, various naturally occurring radionuclides are present (both underground and overground) in several places, which results in lifelong human exposure. The radiation dose received by human beings from the radiation emitted by these naturally occurring radionuclides is approximately 87%. Exposure to radiation poses radiological health hazards. To assess the human health hazards from radiation, the concentration of these naturally occurring radionuclides are measured in soil (used for cultivation), building materials (soil, bricks, sand, marble, etc.), water and dietary items, worldwide. The available literature revealed that numerous studies related to the subject have been carried out in Pakistan. Most of these studies measured the radioactivity concentrations of primordial [uranium (238U), thorium (232Th), radium (226Ra) and potassium (40K)] and anthropogenic [cesium (137Cs)] radionuclide in soil samples (used for cultivation), fertilizers, building materials (i.e. bricks, rocks, sand, soil, marble, etc.), as well as water and dietary items, using a sodium iodide detector or high purity germanium. An effort was made in 2008 to compile these studies as a review article. However, since then, considerable studies have been undertaken and reported in the literature. Therefore, the main objective of the present article is to provide a countrywide baseline data on radionuclide levels, by overviewing and compiling the relevant studies carried out in Pakistan.


2021 ◽  
Vol 46 (3) ◽  
pp. 127-133
Author(s):  
Sooyeon Lim ◽  
Nur Syamsi Syam ◽  
Seongjin Maeng ◽  
Sang Hoon Lee

Background: Phosphogypsum is material produced as a byproduct in fertilizer industry and is generally used for building materials. This material may contain enhanced radium-226 (226Ra) activity concentration compared to its natural concentration that may lead to indoor radon accumulation. Therefore, an accurate measurement method is proposed in this study to determine 226Ra activity concentration in phosphogypsum sample, considering the potential radon leakage from the sample container.Materials and Methods: The International Atomic Energy Agency (IAEA) phosphogypsum reference material was used as a sample in this study. High-purity germanium (HPGe) gamma spectrometry was used to measure the activity concentration of the 226Ra decay products, i.e., 214Bi and 214Pb. Marinelli beakers sealed with three different sealing methods were used as sample containers. Due to the potential leakage of radon from the Marinelli beaker (MB), correction to the activity concentration resulted in gamma spectrometry is needed. Therefore, the leaked fraction of radon escaped from the sample container was calculated and added to the gamma spectrometry measured values.Results and Discussion: Total activity concentration of 226Ra was determined by summing up the activity concentration from gamma spectrometry measurement and calculated concentration from radon leakage correction method. The results obtained from 214Bi peak were 723.4 ± 4.0 Bq· kg-1 in MB1 and 719.2 ± 3.5 Bq· kg-1 in MB2 that showed about 5% discrepancy compared to the certified activity. Besides, results obtained from 214Pb peak were 741.9 ± 3.6 Bq· kg-1 in MB1 and 740.1 ± 3.4 Bq· kg-1 in MB2 that showed about 2% difference compared to the certified activity measurement of 226Ra concentration activity.Conclusion: The results show that radon leakage correction was calculated with insignificant discrepancy to the certified values and provided improvement to the gamma spectrometry. Therefore, measuring 226Ra activity concentration in TENORM (technologically enhanced naturally occurring radioactive material) sample using radon leakage correction can be concluded as a convenient and accurate method that can be easily conducted with simple calculation.


Nukleonika ◽  
2018 ◽  
Vol 63 (3) ◽  
pp. 65-72 ◽  
Author(s):  
Allan Felipe Nunes Perna ◽  
Sergei Anatolyevich Paschuk ◽  
Janine Nicolosi Corrêa ◽  
Danielle Cristine Narloch ◽  
Rafael Carvalho Barreto ◽  
...  

Abstract The main sources of radon in the air of dwellings are soil, building materials, and groundwater. This study aimed to determine the exhalation rate of 222Rn from samples made of concrete and cement mortars, as well as to evaluate by means of gamma spectrometry the hazard indexes associated with other radionuclides present in the studied samples of building materials. The results obtained allowed the comparison of the exhalation rate of radon using theoretical calculations based on one-dimensional and three-dimensional models. Measurements of the activity concentration of radon in air was performed by AlphaGuard radon detector. Furthermore, obtained results were compared with the measurements performed inside the concrete test cells. These test cells were built with the aim of simulating a dwelling in small dimensions and to evaluate indoor radon activity associated with concrete. Consequently, the obtained results of radon exhalation rate, in becquerel per meter squared per hour, for the concrete was 2.55 ± 0.03 Bq·h−1·m−2 for the 1D model and 0.461 ±0.008 Bq·h−1·m−2 for the 3D model. The exhalation rate of radon, for the cement mortar was 1.58 ± 0.03 Bq·h−1·m−2 for the 1D model and 0.439 ± 0.011 Bq·h−1·m−2 for the 3D model. The indoor concentration of 222Rn from the test cell was 112 ± 9 Bq/m3. These values were below the limit of 300 Bq/m3 recommended by the International Commission on Radiological Protection (ICRP) and <148 Bq/m3, the limit recommended by the US Environmental Protection Agency (US EPA). Even so, these values should be the subject of concern since that activity is related only to the contribution of concrete walls.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Ema Sinanović ◽  
Feriz Adrović ◽  
Amira Kasumović ◽  
Amela Kasić

Man is continuously exposed to ionizing radiation because of the presence of naturally occurring radioactive materials (NORM) in the environment. Various technological processes of processing and using of materials that contain natural radionuclides generate materials of enhanced natural radioactivity (TENORM). The largest contribution to irradiance with natural sources of ionizing radiation is the exposure of the population to indoor radon. This gas originates from the radioactive decay of 226Ra and 224Ra that are present in the soil under houses and building materials. Depending on the type of building materials, indoor exposure to radon at dwellings and workplaces can be over a thousand times greater than in outdoor space. In Bosnia and Herzegovina, no valid and comprehensive radiological studies on the building materials have been performed that would guarantee for their dosimetric safety use for installation in residential and industrial buildings, highways, as well as their application for other purposes. The quantification of the radon levels that comes from building materials is a necessary and very important part of the global protection of the population from ionizing radiation. This paper presents the first results of a study on the radon activity concentrations in building materials used in Bosnia and Herzegovina. Measurements were performedwith a professional Alpha GUARD system. The mean values of the activity concentration of the exhaled radon of investigated building materials varied from 10 Bqm-3 to 101 Bqm-3, radon exhalation rate values ranged from 77.0 mBqm-2h-1 to 777.7 mBqm-2h-1. Gamma dose rate was in the range 57–112 nSv h−1.


Author(s):  
Shengyang Feng ◽  
Puxin Chen ◽  
Yu Cui ◽  
Yurong Wu ◽  
Ce Li

Abstract Building material is one of the main sources of indoor radon in China. Radon exhaled from building materials enters the indoor atmosphere and transports in the indoor air space driven by buoyancy-driven airflow. This paper established a numerical model to reveal natural-convective effects on radon transport from building materials into the indoor air space. The building wall is approximated by a rectangular porous medium with uniform porosity and isotropic permeability. The buoyancy-driven flow is assumed to be turbulent and incompressible, ignoring viscous dissipation. The model can predict the dynamic coupling of radon in building materials and indoor atmosphere at different temperature gradient. This paper focuses on the analysis of radon transport with average Nusselt number and Sherwood number of interface between the building wall and the indoor atmosphere, which reveal the mechanism of radon exhalation from building materials into indoor atmosphere.


Sign in / Sign up

Export Citation Format

Share Document