scholarly journals Simulation Methods for the Analysis of Complex Systems

Author(s):  
Hindolo George-Williams ◽  
T. V. Santhosh ◽  
Edoardo Patelli

AbstractEveryday systems like communication, transportation, energy and industrial systems are an indispensable part of our daily lives. Several methods have been developed for their reliability assessment—while analytical methods are computationally more efficient and often yield exact solutions, they are unable to account for the structural and functional complexities of these systems. These complexities often require the analyst to make unrealistic assumptions, sometimes at the expense of accuracy. Simulation-based methods, on the other hand, can account for these realistic operational attributes but are computationally intensive and usually system-specific. This chapter introduces two novel simulation methods: load flow simulation and survival signature simulation which together address the limitations of the existing analytical and simulation methods for the reliability analysis of large systems.

2019 ◽  
Vol 109 (04) ◽  
pp. 242-249
Author(s):  
A. Selmaier ◽  
T. Donhauser ◽  
T. Lechler ◽  
J. Zeitler ◽  
J. Franke

Während sich das Verhalten starr verketteter Systeme relativ einfach mittels Materialflusssimulationen modellieren lässt, sind herkömmliche Simulationsansätze für flexible Fertigungssysteme aufgrund des hohen Datenerhebungs- sowie Parametrisieraufwands nur bedingt geeignet. Jedoch kann durch das automatische Übertragen von Echtzeitdaten in das Simulationsmodell der aktuelle Zustand solcher Systeme deutlich verbessert abgebildet werden. Der Beitrag stellt ein Konzept für die simulationsgestützte Produktionsplanung schnellveränderlicher Systeme vor.   While the behaviour of rigidly linked systems is relatively easy to model by means of material flow simulation, traditional simulation approaches are only suitable to a limited extent for flexible manufacturing systems due to the high data collection and parameterization effort. However, the use of real-time data can significantly improve the simulation of such systems. This paper presents an approach for simulation-based production planning of rapidly changing systems.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2910
Author(s):  
Stefano Rinaldo  ◽  
Andrea Ceresoli  ◽  
Domenico Lahaye  ◽  
Marco Merlo  ◽  
Miloš  Cvetković ◽  
...  

The upward trends in renewable energy penetration, cross-border flow volatility and electricity actors’ proliferation pose new challenges in the power system management. Electricity and market operators need to increase collaboration, also in terms of more frequent and detailed system analyses, so as to ensure adequate levels of quality and security of supply. This work proposes a novel distributed load flow solver enabling for better cross border flow analysis and fulfilling possible data ownership and confidentiality arrangements in place among the actors. The model exploits an Inexact Newton Method, the Newton–Krylov–Schwarz method, available in the portable, extensible toolkit for scientific computation (PETSc) libraries. A case-study illustrates a real application of the model for the TSO–TSO (transmission system operator) cross-border operation, analyzing the specific policy context and proposing a test case for a coordinated power flow simulation. The results show the feasibility of performing the distributed calculation remotely, keeping the overall simulation times only a few times slower than locally.


2019 ◽  
Vol 8 (3) ◽  
pp. 777-788
Author(s):  
Salami Ifedapo Abdullahi ◽  
Mohamed Hadi Habaebi ◽  
Noreha Abd Malik

Flow sensors are very essential in many aspects of our daily lives. Many of the industrial processes need a very consistent flow sensor to monitor and check for irregularities in their system. Therefore, flow sensor is an important tool for advanced operation in industrial environment. In this paper, the design and development of a 3D fabricated flow sensor was carried out using SolidWork 3D CAD. SolidWork Flow Simulation was used to model the effect the turbine flow sensor would have on a constant flowing water while MATLAB Simulink flow graph was created to visualize the effect of turbine flow sensor response with voltage input. Afterwards, the design was 3D printed using UP Plus 2 3D printer. The experimentation involved selection of sensors, coding to control the turbine flow sensor and automatic data logging and storage. During the design phase, the sensors and actuators were assembled using locally sourced material. Subsequently, under controlled laboratory environment, the turbine flow sensor was tested using a DC motor which was programmed to control the revolution per minute(rpm) of the turbine flow sensor. The rpm and velocity of the turbine flow meter was measured and stored in a database via Microsoft Excel using Cool Term Software. A total number of 517 readings were analysed to evaluate the performance of the turbine flow sensor. The result shows that the turbine flow meter is responsive to the motor input voltage and yielded accurate measurement of rpm and velocity of turbine flow meter.


Voltage stability is a relevant part of power system stability analysis ever since many voltage collapse incidences have occurred at different regions of the world. In this paper we take up IEEE 118 bus system as it represents a close approximation of standard Grid system. This IEEE 118-bus system has fixed number of predefined generators, synchronous condensers, transmission lines, transformers and loads. In this work IEEE 118 bus system is simulated and load flow simulation is computed using the software PSS®E. The weak buses of the IEEE standard 118 bus network are predicted with the help of L-Index Algorithm in MATLAB. Further dynamic simulation is also performed in the weak buses obtained from L-Index as it opens up scope of more detail analysis of the system. An initial transient disturbance is then introduced in the weak buses and then the resultant maximum frequency deviation and the recovery time of the voltage is computed which finally helps to detect the weak areas in the transmission network. Further Critical Clearing time of the weakest bus is also computed.


2014 ◽  
Vol 684 ◽  
pp. 413-419
Author(s):  
Jan Grepl ◽  
Karel Frydrýšek ◽  
Marek Penhaker

This article focuses on the biomechanical evaluation of the interaction between load forces to which a sitting man and the seat are mutually exposed. The load forces, which consider actual dispersion in the human population through histograms, are determined using a probabilistic method known as the Simulation-Based Reliability Assessment (SBRA). A simple flat model shows a basic and high-quality stochastic evaluation of all the forces that affect the man and the seat. The results and methodology can be used in many areas of biomechanics, ergonomics or industrial design.


Sign in / Sign up

Export Citation Format

Share Document