The Antifragility of FRC in the Crack Pattern of Reinforced Concrete Ties

2021 ◽  
pp. 98-108
Author(s):  
Alessandro P. Fantilli ◽  
Francesco Tondolo
2019 ◽  
Vol 289 ◽  
pp. 01006 ◽  
Author(s):  
Alberto Negrini ◽  
Marta Roig-Flores ◽  
Eduardo J. Mezquida-Alcaraz ◽  
Liberato Ferrara ◽  
Pedro Serna

Concrete has a natural self-healing capability to seal small cracks, named autogenous healing, which is mainly produced by continuing hydration and carbonation. This capability is very limited and is activated only when in direct contact with water. High Performance Fibre-Reinforced Concrete and Engineered Cementitious Composites have been reported to heal cracks for low damage levels, due to their crack pattern with multiple cracks and high cement contents. While their superior self-healing behaviour compared to traditional concrete types is frequently assumed, this study aims to have a direct comparison to move a step forward in durability quantification. Reinforced concrete beams made of traditional, high-performance and ultra-high-performance fibre-reinforced concretes were prepared, sized 150×100×750 mm3. These beams were pre-cracked in flexion up to fixed strain levels in the tensioned zone to allow the analysis of the effect of the different cracking patterns on the self-healing capability. Afterwards, water permeability tests were performed before and after healing under water immersion. A modification of the water permeability test was also explored using chlorides to evaluate the potential protection of this healing in chloride-rich environments. The results show the superior durability and self-healing performance of UHPFRC elements.


2017 ◽  
Vol 889 ◽  
pp. 270-274
Author(s):  
Noridah Mohamad ◽  
Wan Inn Goh ◽  
Abdul Aziz Abdul Samad ◽  
A. Lockman ◽  
Anas Alalwani

This paper presents the structural behaviour of reinforced concrete beam embedded with high density polyethylene balls (HDPE) subjected to flexural load. The HDPE balls with 180 mm diameter were embedded to create the spherical voids in the beam which lead to reduction in its self-weight. Two beam specimens with HDPE balls (RC-HDPE) and one solid beam (RC-S) with dimension 250 mm x 300 mm x 1100 mm were cast and tested until failure. The results were analysed in the context of its ultimate load, load-deflection profile, and crack pattern and failure mode. It was found that the ultimate load of RC-HDPE was reduced by 32% compared to RC-S beam while the maximum deflection at its mid span was increased by 4%. However, RC-HDPE is noticed to be more ductile compared to RC-S beam. Both types of beams experienced flexure cracks and diagonal tension cracks before failure.


Author(s):  
Mustaqqim Abdul Rahim ◽  
Amirah Syazwani Karuddin ◽  
Afizah Ayob ◽  
Ahmad Nur Aizat Ahmad ◽  
Shahiron Shahidan ◽  
...  

2018 ◽  
Author(s):  
Tin Lai

Continuously reinforced concrete pavement (CRCP) rapidly becomes a common standard in most highway pavement design due to its high performance. Early-age cracks play a crucial role in characterising CRCP's long-term performance, hence crack formations and patterns are of interest in most highway departments. The design parameters of a CRCP are studied in this work as a parametric study on efficient design configuration. Numerical experiments were performed to produce a stress profile induced by crack initiation and long-term traffic load. This work contributes a probabilistic study on crack pattern formation from typical stress profile, including environmental and shrinkage stress, as an insight into predicting the likelihood of crack patterns initiation and propagation along the depth of the concrete slab. Studies also showed transverse steel bar plays a crucial role in determining the location of the crack formation, but a minimal effect in controlling crack width and deflection. A study on the probabilistic model helps pavement design to produce a desirable crack pattern, to perform controlled-cracks that enhance the vertical load transferability of a cracked CRCP.


2020 ◽  
Vol 19 (3) ◽  
pp. 063-076
Author(s):  
Łukasz Jabłoński ◽  
Anna Halicka

The tests results of composite reinforced concrete T-shaped beams with an interface between the web and the flange are presented. The interface in the beams differed in the degree of the adhesion activity and the joining reinforcement ratio. Five series of beams were tested for deflection, displacement of composite parts in relation to each other, strain of main and transverse reinforcement, and crack pattern. The results were compared with the theoretical forces, at which interface cracks and achieves the bearing capacity, calculated in accordance with fib Model Code 2010.


2020 ◽  
Vol 24 (1) ◽  
pp. 17-23
Author(s):  
Mardis Darwis ◽  
Rudy Djamaluddin ◽  
Rita Irmawaty ◽  
Astiah Amir

The previous research of using truss system reinforcement in the beam without concrete (BTR) in the tension zone causes a decrease in flexural capacity due to the failure in the area near the support. Therefore, it is necessary to add tensile reinforcement in the support zone. This study aims to analyze the ultimate capacity of the truss system concrete beam strengthened with tensile reinforcement and to analyze the effect of tensile reinforcement in support zone due to crack pattern. This study was conducted experimentally in the laboratory. The dimension of truss reinforced concrete specimens are 15 cm x 20 cm x 330 cm that added tensile reinforcement with three types of length, they are BTRP 40D, BTRP 50D, and BTRP 60D, where D (13 mm) is diameter of tensile reinforcement. The flexural test is carried out by monotonic static loading. The results showed that tensile reinforcement in BTRP 40D was not able to carry the ultimate capacity due to premature failure in the support zone. while BTRP 50D and BTRP 60D specimens can enhance the ultimate capacity without facing premature failure in the support zone. The tensile reinforcement of 60D has the highest ultimate capacity because it can carry the biggest loads and minimum crack pattern.


Sign in / Sign up

Export Citation Format

Share Document