Optimization of the Electrical Energy Consumed by a Machine Tool for a Coupled and Uncoupled Cutting System

2021 ◽  
pp. 288-300
Author(s):  
Anoire Ben Jdidia ◽  
Taissir Hentati ◽  
Hichem Hassine ◽  
Mohamed Taoufik Khabou ◽  
Mohamed Haddar
Author(s):  
Mohsen Habibi ◽  
Zezhong Chevy Chen

Face-hobbing is a productive process to manufacture bevel and hypoid gears. Due to the complexity of face-hobbing, few research works have been conducted on this process. In face-hobbing, the cutting velocity along the cutting edge varies because of the intricate geometry of the cutting system and the machine tool kinematics. Due to the varying cutting velocity and the specific cutting system geometry, working relief and rake angles change along the cutting edge and have large variations at the corner which cause the local tool wear. In this paper, a new method to design cutting blades is proposed by changing the geometry of the rake and relief surfaces to avoid those large variations while the cutting edge is kept unchanged. In the proposed method, the working rake and relief angles are kept constant along the cutting edge by considering the varying cutting velocity and the machine tool kinematics. By applying the proposed method to design the blades, the tool wear characteristics are improved especially at the corner. In addition, in this paper, complete mathematical representations of the cutting system are presented. The working rake and relief angles are measured on the computer-aided design (CAD) model of the proposed and conventional blades and compared with each other. The results show that, unlike the conventional blade, in case of the proposed blade, the working rake and relief angles remain constant along the cutting edge. In addition, in order to validate the better tool wear characteristics of the proposed blade, finite element (FE) machining simulations are conducted on both the proposed and conventional blades. The results show improvements in the tool wear characteristics of the proposed blade in comparison with the conventional one.


1972 ◽  
Vol 94 (4) ◽  
pp. 985-990
Author(s):  
H. Takeyama ◽  
O. Sakata

This paper deals with a challenge to apply the method of indicial response analysis for obtaining the frequency characteristics of total cutting system, tool system, and cutting zone. The feasibility of this method has been verified by simulation tests. Furthermore, linearity in cutting zone has been demonstrated to a first approximation by utilizing the proposed method. As examples of its application, on-line prediction or prevention of chatter vibration and simple evaluation of machine tool structure have been proposed.


Author(s):  
Siyuan Xing ◽  
Albert C. J. Luo

Abstract In this paper, a nonlinear, regenerative, orthogonal cutting system with a weak periodic oscillation of workpiece is considered. Period-1 motions in such a system are studied through a semi-analytical method, and the corresponding stability and bifurcations of the period-1 motions are analyzed via the eigenvalue analysis. The vibration of machine-tool varying with excitation is studied, and excitation effects on machine-tool chatters are discussed. Numerical simulations of unstable and stable period-1 motions are completed from analytical predictions. The machine-tool chatter can emerge from the saddle-node or Neimark bifurcation of period-1 motions.


Author(s):  
Anis Fatima ◽  
Amir Iqbal Syed

Non-traditional machining processes are popular for generating complex features on the work piece. With advances in material engineering, new ways of cutting technologies has been emerged. However, EDM (Electric Discharge Machining) has gained recognition for producing extraordinary surface finished, intricate part geometries with accuracy and its ability to cut through difficult to machined materials. However, like every product cycle, manufacturing processes also require energy to convert raw materials into finished product. In manufacturing operations, energy input gives carbon footprints which have an effect on our environment. It is observed that reducing energy consumption is becoming the main concern of manufacturers because of enforcing environmental laws and due to the economics of the processing. It is argued that world’s 70% of energy consumption is consumed by manufacturing sector. The aim of the work was to identify direct energy demands in wire cut EDM. The variability in energy demand was explored by operating wire cut EDM at no-load and loaded conditions.Stainless steel S304 was used as a work piece. Experiments were performed on three different wire-cut EDM.Molybdenum wire, brass wire and copper wire were used as an electrode wire and distilled water was used as a working fluid. During the experiment, electrical current was measured and the variation of power requirement was evaluated. Power required by different features of EDM was compared with the existing energy models and factors were identified that consume most of the electrical energy. Further, a comparison is made between traditional and non-traditional machining processes. This contribution will help to assess energy efficiency of EDM technology and identify priority areas for improvements. This work is also significant for machine tool designers for optimum utilization of energy,reduced environmental impact and reduced production cost of their machine tool.


Sign in / Sign up

Export Citation Format

Share Document