scholarly journals BoundaryNet: An Attentive Deep Network with Fast Marching Distance Maps for Semi-automatic Layout Annotation

2021 ◽  
pp. 3-18
Author(s):  
Abhishek Trivedi ◽  
Ravi Kiran Sarvadevabhatla
Author(s):  
Van Linh Le ◽  
M. Beurton-Aimar ◽  
A. Zemmari ◽  
N. Parisey
Keyword(s):  

Sensors ◽  
2020 ◽  
Vol 20 (5) ◽  
pp. 1488
Author(s):  
Federico Peralta ◽  
Mario Arzamendia ◽  
Derlis Gregor ◽  
Daniel G. Reina ◽  
Sergio Toral

Local path planning is important in the development of autonomous vehicles since it allows a vehicle to adapt their movements to dynamic environments, for instance, when obstacles are detected. This work presents an evaluation of the performance of different local path planning techniques for an Autonomous Surface Vehicle, using a custom-made simulator based on the open-source Robotarium framework. The conducted simulations allow to verify, compare and visualize the solutions of the different techniques. The selected techniques for evaluation include A*, Potential Fields (PF), Rapidly-Exploring Random Trees* (RRT*) and variations of the Fast Marching Method (FMM), along with a proposed new method called Updating the Fast Marching Square method (uFMS). The evaluation proposed in this work includes ways to summarize time and safety measures for local path planning techniques. The results in a Lake environment present the advantages and disadvantages of using each technique. The proposed uFMS and A* have been shown to achieve interesting performance in terms of processing time, distance travelled and security levels. Furthermore, the proposed uFMS algorithm is capable of generating smoother routes.


2021 ◽  
pp. 106990
Author(s):  
Lu Ding ◽  
Yong Wang ◽  
Robert Laganière ◽  
Dan Huang ◽  
Xinbin Luo ◽  
...  

2021 ◽  
Vol 6 (4) ◽  
pp. 8277-8284
Author(s):  
Balazs Nagy ◽  
Lorant Kovacs ◽  
Csaba Benedek

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bayu Adhi Nugroho

AbstractA common problem found in real-word medical image classification is the inherent imbalance of the positive and negative patterns in the dataset where positive patterns are usually rare. Moreover, in the classification of multiple classes with neural network, a training pattern is treated as a positive pattern in one output node and negative in all the remaining output nodes. In this paper, the weights of a training pattern in the loss function are designed based not only on the number of the training patterns in the class but also on the different nodes where one of them treats this training pattern as positive and the others treat it as negative. We propose a combined approach of weights calculation algorithm for deep network training and the training optimization from the state-of-the-art deep network architecture for thorax diseases classification problem. Experimental results on the Chest X-Ray image dataset demonstrate that this new weighting scheme improves classification performances, also the training optimization from the EfficientNet improves the performance furthermore. We compare the aggregate method with several performances from the previous study of thorax diseases classifications to provide the fair comparisons against the proposed method.


Sign in / Sign up

Export Citation Format

Share Document