Torsional Behavior of Reinforced Concrete Members Wrapped with CFRP Sheets

2021 ◽  
pp. 1566-1576
Author(s):  
Akhrawat Lenwari ◽  
Siwakorn Soysak ◽  
Chanachai Thongchom
2020 ◽  
Vol 1002 ◽  
pp. 604-614
Author(s):  
Hayder Hussein H. Kammona ◽  
Muhammad Abed Attiya ◽  
Qasim M. Shakir

This study simulates a procedure of rehabilitation of reinforced concrete beams with the aid of ANSYS 17 software. In this work, the BIRTH and DEATH procedure (in ANSYS) was adopted to model the post-repairing stage. This aspect has rarely been considered by previous studies that utilized a carbon fiber reinforced polymer (CFRP) sheet when retrofitting. To verify the suggested technique, six specimens were analyzed with two values of shear span-to-depth ratios (3 and 4) and three spaces of CFRP sheets (100mm, 150mm and 200mm). The effect of the repairing process on the structural performance of the retrofitted beam is also investigated.It is found that the suggested technique yielded a good agreement with the experimental results and the maximum differences in the failure loads between the numerical and experimental results were 10% and 4% for shear span-to-depth ratios of 3 and 4, respectively. It was also ascertained that upgrading reinforced concrete members within the early stages of loading showed a better enhancement in the loading capacity compared to upgrading reinforced concrete members close to the juncture of failure.


2011 ◽  
Vol 194-196 ◽  
pp. 1449-1452
Author(s):  
Gui Bing Li ◽  
Xiao Yan Sun ◽  
Yu Gang Guo

Many flexural or tensile reinforced concrete members must be crack-free or the crack widths must be within specified limit value at service load levels. Presently, there are a number of structure members cannot satisfy its designed serviceability, due to the degradation of structural materials (due to durability problems) or by an increase in design loads. The use of bonding CFRP sheets on the side surfaces for strengthening or repair existing RC beamsis proposed to investigate the first crack strength and the cracking characteristics of RC beams. In order to verify the effectiveness of this application, experimental tests on six strengthened beams and one control beamhad been carried out. Experimental results demonstrated that this appears a promising technique both on improving the first crackstrength and on suppressing the crack width.


2021 ◽  
pp. 136943322110125
Author(s):  
Zhigang Yu ◽  
Deshan Shan

The study of reinforced concrete members subjected to combined loads always has been an important research topic in the field of engineering, but the torsional behavior of T-shaped reinforced concrete members subjected to combined loads has yet to be determined. This paper is focused on providing a detailed explanation of the torsional behavior of T-shaped reinforced concrete members subjected to combined compression-bending-shear-torsion. From the perspective of experimental tests and numerical analyses, in this paper, we discuss the effects of combined loads on the torsion bearing capacity, the development of cracks and the failure mode, strains of key points in the concrete and longitudinal reinforcement, and the relation of torsion and angular displacement. We conducted experiments and numerical analyses of four groups of reinforced concrete members by using the main variables of the axial pressure ratio and the bending moment. Also, the experimental and calculated results are compared based on the elastic-plastic damage constitutive model of concrete. Based on the test data and the existing formula, we also extended the formula used to calculate the torsion bearing capacity and provided diagrams of the interaction when combined loads were applied. In addition, the results of this study highlight the turning point from torsion failure to compression-bending-torsion failure. The test results demonstrated that torsion capability increases in the specified range of axial pressure ratio and decreases as bending increases. The test results also indicate the importance of considering the effects of compression-shear-bending on the torsion bearing capacity in the engineering design.


2012 ◽  
Vol 455-456 ◽  
pp. 1079-1083
Author(s):  
Wei Jun Yang ◽  
Hong Jia Huang ◽  
Wen Yu Jiang ◽  
Yi Bin Peng

Shantou atmospheric salt-fog environment is simulated with the comprehensive salt spray test chamber. By using reinforced concrete short beams under different water-cement radio, different corrosion time, the inclined section degradation rules of the corrosive reinforced concrete members are researched for establishing shear capacity of short beam formulas in salt-fog environment.


Sign in / Sign up

Export Citation Format

Share Document