Sensor CFRP-Sheets for the Controlled Strengthening and Retrofitting of Reinforced Concrete Members

Author(s):  
Klaus Holschemacher ◽  
Stefan Käseberg
2021 ◽  
pp. 1566-1576
Author(s):  
Akhrawat Lenwari ◽  
Siwakorn Soysak ◽  
Chanachai Thongchom

2020 ◽  
Vol 1002 ◽  
pp. 604-614
Author(s):  
Hayder Hussein H. Kammona ◽  
Muhammad Abed Attiya ◽  
Qasim M. Shakir

This study simulates a procedure of rehabilitation of reinforced concrete beams with the aid of ANSYS 17 software. In this work, the BIRTH and DEATH procedure (in ANSYS) was adopted to model the post-repairing stage. This aspect has rarely been considered by previous studies that utilized a carbon fiber reinforced polymer (CFRP) sheet when retrofitting. To verify the suggested technique, six specimens were analyzed with two values of shear span-to-depth ratios (3 and 4) and three spaces of CFRP sheets (100mm, 150mm and 200mm). The effect of the repairing process on the structural performance of the retrofitted beam is also investigated.It is found that the suggested technique yielded a good agreement with the experimental results and the maximum differences in the failure loads between the numerical and experimental results were 10% and 4% for shear span-to-depth ratios of 3 and 4, respectively. It was also ascertained that upgrading reinforced concrete members within the early stages of loading showed a better enhancement in the loading capacity compared to upgrading reinforced concrete members close to the juncture of failure.


2011 ◽  
Vol 194-196 ◽  
pp. 1449-1452
Author(s):  
Gui Bing Li ◽  
Xiao Yan Sun ◽  
Yu Gang Guo

Many flexural or tensile reinforced concrete members must be crack-free or the crack widths must be within specified limit value at service load levels. Presently, there are a number of structure members cannot satisfy its designed serviceability, due to the degradation of structural materials (due to durability problems) or by an increase in design loads. The use of bonding CFRP sheets on the side surfaces for strengthening or repair existing RC beamsis proposed to investigate the first crack strength and the cracking characteristics of RC beams. In order to verify the effectiveness of this application, experimental tests on six strengthened beams and one control beamhad been carried out. Experimental results demonstrated that this appears a promising technique both on improving the first crackstrength and on suppressing the crack width.


2012 ◽  
Vol 455-456 ◽  
pp. 1079-1083
Author(s):  
Wei Jun Yang ◽  
Hong Jia Huang ◽  
Wen Yu Jiang ◽  
Yi Bin Peng

Shantou atmospheric salt-fog environment is simulated with the comprehensive salt spray test chamber. By using reinforced concrete short beams under different water-cement radio, different corrosion time, the inclined section degradation rules of the corrosive reinforced concrete members are researched for establishing shear capacity of short beam formulas in salt-fog environment.


2010 ◽  
Vol 163-167 ◽  
pp. 1574-1577 ◽  
Author(s):  
Tong Feng Zhao ◽  
Hong Nan Li ◽  
Jia Huan Yu

Moment-deformation curves of square steel tube filled with steel reinforced concrete subjected to bending load were simulated by the ABAQUS software. Calculated and experimental curves agreed well with each other. Through studying further the calculated member, the behavior of materials subjected to moment is given. Finally, flexural capacity formula of square steel tube filled with cross steel reinforced concrete is proposed.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3255 ◽  
Author(s):  
Fang Yuan ◽  
Mengcheng Chen

Fibre-reinforced polymer (FRP)-reinforced concrete members exhibit low ductility due to the linear-elastic behaviour of FRP materials. Concrete members reinforced by hybrid FRP–steel bars can improve strength and ductility simultaneously. In this study, the plastic hinge problem of hybrid FRP–steel reinforced concrete beams was numerically assessed through finite element analysis (FEA). Firstly, a finite element model was proposed to validate the numerical method by comparing the simulation results with the test results. Then, three plastic hinge regions—the rebar yielding zone, concrete crushing zone, and curvature localisation zone—of the hybrid reinforced concrete beams were analysed in detail. Finally, the effects of the main parameters, including the beam aspect ratio, concrete grade, steel yield strength, steel reinforcement ratio, steel hardening modulus, and FRP elastic modulus on the lengths of the three plastic zones, were systematically evaluated through parametric studies. It is determined that the hybrid reinforcement ratio exerts a significant effect on the plastic hinge lengths. The larger the hybrid reinforcement ratio, the larger is the extent of the rebar yielding zone and curvature localisation zone. It is also determined that the beam aspect ratio, concrete compressive strength, and steel hardening ratio exert significant positive effects on the length of the rebar yielding zone.


Sign in / Sign up

Export Citation Format

Share Document