2011 ◽  
Vol 339 ◽  
pp. 28-31
Author(s):  
Hong Mei

An automatic parking controller is proposed. Fuzzy control is taken to simulate the action of experienced driver as an alternative to conventional methods. The angle between the midline of the car and ideal path and the distance between the midpoint of the car and the ideal path are taken as the inputs of the fuzzy controller. The angle of the steering wheel is taken as the output of the fuzzy controller. A set of fuzzy logic rules are build for reasoning. With sensors installed in the car to replace people’s eyes and computer to replace people’s brain, the automatic parking system is more precise and quicker than human’s parking. At last, simulation is made and proved the validity of the proposed method.


Author(s):  
B. Lee ◽  
Y. Wei ◽  
I. Y. Guo

To overcome the deficiency of ultrasonic sensor and camera, this paper proposed a method of autonomous parking based on the self-driving car, using HDL-32E LiDAR. First the 3-D point cloud data was preprocessed. Then we calculated the minimum size of parking space according to the dynamic theories of vehicle. Second the rapidly-exploring random tree algorithm (RRT) algorithm was improved in two aspects based on the moving characteristic of autonomous car. And we calculated the parking path on the basis of the vehicle’s dynamics and collision constraints. Besides, we used the fuzzy logic controller to control the brake and accelerator in order to realize the stably of speed. At last the experiments were conducted in an autonomous car, and the results show that the proposed automatic parking system is feasible and effective.


2012 ◽  
Author(s):  
Thomas M. Crawford ◽  
Justin Fine ◽  
Donald Homa
Keyword(s):  

1997 ◽  
Vol 36 (04/05) ◽  
pp. 368-371
Author(s):  
R. Soma ◽  
Y. Yamamoto

Abstract.A new method was developed for continuous isotopic estimation of human whole body CO2 rate of appearance (Ra) during non-steady state exercise. The technique consisted of a breath-by-breath measurement of 13CO2 enrichment (E) and a real-time fuzzy logic feedback system which controlled NaH13CO3 infusion rate to achieve an isotopic steady state. Ra was estimated from the isotope infusion rate and body 13CO2 enrichment which was equal to E at the isotopic steady state. During a non-steady state incremental cycle exercise (5 w/min or 10 w/min), NaH13CO3 infusion rate was successfully increased by the action of feedback controller so as to keep E constant.


2020 ◽  
Vol 39 (6) ◽  
pp. 8357-8364
Author(s):  
Thompson Stephan ◽  
Ananthnarayan Rajappa ◽  
K.S. Sendhil Kumar ◽  
Shivang Gupta ◽  
Achyut Shankar ◽  
...  

Vehicular Ad Hoc Networks (VANETs) is the most growing research area in wireless communication and has been gaining significant attention over recent years due to its role in designing intelligent transportation systems. Wireless multi-hop forwarding in VANETs is challenging since the data has to be relayed as soon as possible through the intermediate vehicles from the source to destination. This paper proposes a modified fuzzy-based greedy routing protocol (MFGR) which is an enhanced version of fuzzy logic-based greedy routing protocol (FLGR). Our proposed protocol applies fuzzy logic for the selection of the next greedy forwarder to forward the data reliably towards the destination. Five parameters, namely distance, direction, speed, position, and trust have been used to evaluate the node’s stability using fuzzy logic. The simulation results demonstrate that the proposed MFGR scheme can achieve the best performance in terms of the highest packet delivery ratio (PDR) and minimizes the average number of hops among all protocols.


2018 ◽  
Vol 2 (1) ◽  
Author(s):  
Raid Daoud ◽  
Yaareb Al-Khashab

The internet service is provided by a given number of servers located in the main node of internet service provider (ISP). In some cases; the overload problem was occurred because a demand on a given website goes to very high level. In this paper, a fuzzy logic control (FLC) has proposed to distribute the load into the internet servers by a smart and flexible manner. Three effected parameters are tacked into account as input for FLC: link capacity which has three linguistic variables with Gaussian membership function (MF): (small, medium and big), traffic density with linguistic variables (low, normal and high) and channel latency with linguistic variables (empty, half and full); with one output which is the share server status (single, simple and share). The proposed work has been simulated by using MATLAB 2016a, by building a structure in the Fuzzy toolbox. The results were fixed by two manners: the graphical curves and the numerical tables, the surface response was smoothly changed and translates the well-fixed control system. The numerical results of the control system satisfy the idea of the smart rout for the incoming traffics from the users to internet servers. So, the response of the proposed system for the share of server ratio is 0.122, when the input parameter in the smallest levels; and the ratio is 0.879 when the input parameters are in highest level. The smart work and flexible use for the FLC is the main success solution for most of today systems control.


Author(s):  
Fachrudin Hunaini ◽  
Imam Robandi ◽  
Nyoman Sutantra

Fuzzy Logic Control (FLC) is a reliable control system for controlling nonlinear systems, but to obtain optimal fuzzy logic control results, optimal Membership Function parameters are needed. Therefore in this paper Particle Swarm Optimization (PSO) is used as a fast and accurate optimization method to determine Membership Function parameters. The optimal control system simulation is carried out on the automatic steering system of the vehicle model and the results obtained are the vehicle's lateral motion error can be minimized so that the movement of the vehicle can always be maintained on the expected trajectory


Sign in / Sign up

Export Citation Format

Share Document