The Influence of Drivetrain Layout on Lateral Vehicle Dynamic

Author(s):  
Nguyen Khac Minh ◽  
Do Tien Dung ◽  
Nguyen Khac Tuan
Keyword(s):  
2011 ◽  
Vol 23 (1) ◽  
Author(s):  
Piotr Kurowski ◽  
Adam Martowicz ◽  
Tadeusz Uhl ◽  
Grzegorz Lasko

Machines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 107
Author(s):  
Rongchao Jiang ◽  
Zhenchao Jin ◽  
Dawei Liu ◽  
Dengfeng Wang

In order to reduce the negative effect of lightweighting of suspension components on vehicle dynamic performance, the control arm and torsion beam widely used in front and rear suspensions were taken as research objects for studying the lightweight design method of suspension components. Mesh morphing technology was employed to define design variables. Meanwhile, the rigid–flexible coupling vehicle model with flexible control arm and torsion beam was built for vehicle dynamic simulations. The total weight of control arm and torsion beam was taken as optimization objective, as well as ride comfort and handling stability performance indexes. In addition, the fatigue life, stiffness, and modal frequency of control arm and torsion beam were taken as the constraints. Then, Kriging model and NSGA-II were adopted to perform the multi-objective optimization of control arm and torsion beam for determining the lightweight scheme. By comparing the optimized and original design, it indicates that the weight of the optimized control arm and torsion beam are reduced 0.505 kg and 1.189 kg, respectively, while structural performance and vehicle performance satisfy the design requirement. The proposed multi-objective optimization method achieves a remarkable mass reduction, and proves to be feasible and effective for lightweight design of suspension components.


2021 ◽  
Vol 13 (4) ◽  
pp. 168781402110073
Author(s):  
Wang Xin ◽  
Gu Liang ◽  
Dong Mingming ◽  
Li Xiaolei

With regard to the structural characteristics of the McPherson suspension system, when a vehicle is being driven on a rough road surface, the force direction of the suspension varies. This poses challenges to the vehicle’s driving safety and handling stability. Based on Lagrangian equations, this paper proposes a new nonlinear semi-vehicle suspension model and presents comparative studies, conducted through simulation, on the estimated accuracy and computational overhead of the small-computational-overhead extended Kalman filter (EKF) and unscented Kalman estimation (UKF) methods, and on the effectiveness of the skyhook sliding mode control (SHSMC) and nonlinear skyhook-sliding mode control (NSHSMC) semi-active suspension control methods. The response of the vehicle to the state estimation algorithm was evaluated through computer simulations using the Carsim vehicle dynamic software. The simulation results reveal that the vehicle dynamic states were satisfactorily estimated when the vehicle was driven on a rough road surface. Compared with the small-computational-overhead EKF algorithm, the estimated results of these variables based on the UKF algorithm have higher accuracy. However, the UKF algorithm requires longer computation time compared with the EKF algorithm. The SHSMC control algorithm achieved greater improvement for the vehicle’s drive handling stability in the 6–10-Hz vibration region compared with the NSHSMC control algorithm. In a high-frequency region over 10Hz, the semi-active suspension controlled by the SHSMC method had a more adverse effect on the driving comfort.


Author(s):  
Di Yao ◽  
Philipp Ulbricht ◽  
Stefan Tonutti ◽  
Kay Büttner ◽  
Prokop Günther

Pervasive applications of the vehicle simulation technology are a powerful motivation for the development of modern automobile industry. As basic parameters of road vehicle, vehicle dynamic parameters can significantly influence the ride comfort and dynamics of vehicle, and therefore have to be calculated accurately to obtain reliable vehicle simulation results. Aiming to develop a general solution, which is applicable to diverse test rigs with different mechanisms, a novel model-based parameter identification approach using optimized excitation trajectory is proposed in this paper to identify the vehicle dynamic parameters precisely and efficiently. The proposed approach is first verified against a virtual test rig using a universal mechanism. The simulation verification consists of four sections: (a) kinematic analysis, including the analysis of forward/inverse kinematic and singularity architecture; (b) dynamic modeling, in which three kinds of dynamic modeling method are used to derive the dynamic models for parameter identification; (c) trajectory optimization, which aims to search for the optimal trajectory to minimize the sensitivity of parameter identification to measurement noise; and (d) multibody simulation, by which vehicle dynamic parameters are identified based on the virtual test rig in the simulation environment. In addition to the simulation verification, the proposed parameter identification approach is applied to the real test rig (vehicle inertia measuring machine) in laboratory subsequently. Despite the mechanism difference between the virtual test rig and vehicle inertia measuring machine, this approach has shown an excellent portability. The experimental results indicate that the proposed parameter identification approach can effectively identify the vehicle dynamic parameters without a high requirement of movement accuracy.


2014 ◽  
Vol 602-605 ◽  
pp. 795-798 ◽  
Author(s):  
Xuan Jiong Xu ◽  
Xue Xun Guo

Through research of vehicle dynamic feature, analysis and research of the problem of driving wandering by user retroactions, the article put forward some test and evaluation methods of driving wandering. And the article is discussed about main reasons and solutions of driving wandering in-depth.


Sign in / Sign up

Export Citation Format

Share Document