Computational Properties of Partial Non-deterministic Matrices and Their Logics

Author(s):  
Sérgio Marcelino ◽  
Carlos Caleiro ◽  
Pedro Filipe
Author(s):  
Nico Potyka

Bipolar abstract argumentation frameworks allow modeling decision problems by defining pro and contra arguments and their relationships. In some popular bipolar frameworks, there is an inherent tendency to favor either attack or support relationships. However, for some applications, it seems sensible to treat attack and support equally. Roughly speaking, turning an attack edge into a support edge, should just invert its meaning. We look at a recently introduced bipolar argumentation semantics and two novel alternatives and discuss their semantical and computational properties. Interestingly, the two novel semantics correspond to stable semantics if no support relations are present and maintain the computational complexity of stable semantics in general bipolar frameworks.


1998 ◽  
Vol 21 (4) ◽  
pp. 473-474 ◽  
Author(s):  
Stephen Grossberg

“Chorus embodies an attempt to find out how far a mostly bottom-up approach to representation can be taken.” Models that embody both bottom-up and top-down learning have stronger computational properties and explain more data about representation than feedforward models do.


2018 ◽  
Author(s):  
Andrea E. Martin

Hierarchical structure and compositionality imbue human language with unparalleled expressive power and set it apart from other perception-action systems. However, neither formal nor neurobiological models account for how these defining computational properties might arise in a physiological system. I attempt to reconcile hierarchy and compositionality with principles from cell assembly computation in neuroscience; the result is an emerging theory of how the brain could convert distributed perceptual representations into hierarchical structures across multiple timescales while representing interpretable incremental stages of (de)compositional meaning. The model's architecture - a multidimensional coordinate system based on neurophysiological models of sensory processing - proposes that a manifold of neural trajectories encodes sensory, motor, and abstract linguistic states. Gain modulation, including inhibition, tunes the path in the manifold in accordance with behavior, and is how latent structure is inferred. As a consequence, predictive information about upcoming sensory input during production and comprehension is available without a separate operation. The proposed processing mechanism is synthesized from current models of neural entrainment to speech, concepts from systems neuroscience and category theory, and a symbolic-connectionist computational model that uses time and rhythm to structure information. I build on evidence from cognitive neuroscience and computational modeling that suggests a formal and mechanistic alignment between structure building and neural oscillations, and moves towards unifying basic insights from linguistics and psycholinguistics with the currency of neural computation.


2020 ◽  
Vol 34 (06) ◽  
pp. 10218-10225 ◽  
Author(s):  
Fabrizio M Maggi ◽  
Marco Montali ◽  
Rafael Peñaloza

Temporal logics over finite traces have recently seen wide application in a number of areas, from business process modelling, monitoring, and mining to planning and decision making. However, real-life dynamic systems contain a degree of uncertainty which cannot be handled with classical logics. We thus propose a new probabilistic temporal logic over finite traces using superposition semantics, where all possible evolutions are possible, until observed. We study the properties of the logic and provide automata-based mechanisms for deriving probabilistic inferences from its formulas. We then study a fragment of the logic with better computational properties. Notably, formulas in this fragment can be discovered from event log data using off-the-shelf existing declarative process discovery techniques.


Author(s):  
Meghyn Bienvenu ◽  
Camille Bourgaux

In this paper, we explore the issue of inconsistency handling over prioritized knowledge bases (KBs), which consist of an ontology, a set of facts, and a priority relation between conflicting facts. In the database setting, a closely related scenario has been studied and led to the definition of three different notions of optimal repairs (global, Pareto, and completion) of a prioritized inconsistent database. After transferring the notions of globally-, Pareto- and completion-optimal repairs to our setting, we study the data complexity of the core reasoning tasks: query entailment under inconsistency-tolerant semantics based upon optimal repairs, existence of a unique optimal repair, and enumeration of all optimal repairs. Our results provide a nearly complete picture of the data complexity of these tasks for ontologies formulated in common DL-Lite dialects. The second contribution of our work is to clarify the relationship between optimal repairs and different notions of extensions for (set-based) argumentation frameworks. Among our results, we show that Pareto-optimal repairs correspond precisely to stable extensions (and often also to preferred extensions), and we propose a novel semantics for prioritized KBs which is inspired by grounded extensions and enjoys favourable computational properties. Our study also yields some results of independent interest concerning preference-based argumentation frameworks.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Ali Karimi ◽  
Jan Odenthal ◽  
Florian Drawitsch ◽  
Kevin M Boergens ◽  
Moritz Helmstaedter

We investigated the synaptic innervation of apical dendrites of cortical pyramidal cells in a region between layers (L) 1 and 2 using 3-D electron microscopy applied to four cortical regions in mouse. We found the relative inhibitory input at the apical dendrite’s main bifurcation to be more than 2-fold larger for L2 than L3 and L5 thick-tufted pyramidal cells. Towards the distal tuft dendrites in upper L1, the relative inhibitory input was at least about 2-fold larger for L5 pyramidal cells than for all others. Only L3 pyramidal cells showed homogeneous inhibitory input fraction. The inhibitory-to-excitatory synaptic ratio is thus specific for the types of pyramidal cells. Inhibitory axons preferentially innervated either L2 or L3/5 apical dendrites, but not both. These findings describe connectomic principles for the control of pyramidal cells at their apical dendrites and support differential computational properties of L2, L3 and subtypes of L5 pyramidal cells in cortex.


Sign in / Sign up

Export Citation Format

Share Document