Passive tracer transport in stochastic flows

2001 ◽  
pp. 385-398
Author(s):  
W. A. Woyczyński
2020 ◽  
Vol 13 (11) ◽  
pp. 5465-5483
Author(s):  
Clément Bricaud ◽  
Julien Le Sommer ◽  
Gurvan Madec ◽  
Christophe Calone ◽  
Julie Deshayes ◽  
...  

Abstract. Ocean biogeochemical models are key tools for both scientific and operational applications. Nevertheless the cost of these models is often expensive because of the large number of biogeochemical tracers. This has motivated the development of multi-grid approaches where ocean dynamics and tracer transport are computed on grids of different spatial resolution. However, existing multi-grid approaches to tracer transport in ocean modelling do not allow the computation of ocean dynamics and tracer transport simultaneously. This paper describes a new multi-grid approach developed for accelerating the computation of passive tracer transport in the Nucleus for European Modelling of the Ocean (NEMO) ocean circulation model. In practice, passive tracer transport is computed at runtime on a grid with coarser spatial resolution than the hydrodynamics, which reduces the CPU cost of computing the evolution of tracers. We describe the multi-grid algorithm, its practical implementation in the NEMO ocean model, and discuss its performance on the basis of a series of sensitivity experiments with global ocean model configurations. Our experiments confirm that the spatial resolution of hydrodynamical fields can be coarsened by a factor of 3 in both horizontal directions without significantly affecting the resolved passive tracer fields. Overall, the proposed algorithm yields a reduction by a factor of 7 of the overhead associated with running a full biogeochemical model like PISCES (with 24 passive tracers). Propositions for further reducing this cost without affecting the resolved solution are discussed.


2008 ◽  
Vol 21 (12) ◽  
pp. 2752-2769 ◽  
Author(s):  
Vinu Valsala ◽  
Shamil Maksyutov ◽  
Ikeda Motoyoshi

Abstract An offline passive tracer transport model with self-operating diagnostic-mode vertical mixing and horizontal diffusion parameterizations is used with assimilated ocean currents to find the chlorofluorocarbon (CFC-11) cycle in oceans. This model was developed at the National Institute for Environmental Studies (NIES) under the carbon cycle research project inside the Greenhouse Gas Observing Satellite (GOSAT) modeling group. The model borrows offline fields from precalculated monthly archives of assimilated ocean currents, temperature, and salinity, and it evolves a prognostic passive tracer with prescribed surface forcing. The model’s performance is validated by simulating the CFC-11 cycle in the ocean starting from the preindustrial period (1938) with observed anthropogenic perturbations of atmospheric CFC-11 to comply with the Ocean Carbon-Cycle Model Intercomparison Project Phase-2 (OCMIP-2) flux protocol. The model results are compared with ship observations as well as the results of candidate models of OCMIP-2 and a performance is assessed. The model simulates the deep-ventilation processes in the Atlantic Ocean appreciably well and yields a good agreement in the column inventory of the CFC-11 amplitude and phase compared to the observation. The statistical skill test shows that this model outperforms other candidate models of OCMIP-2 because of its higher resolution and assimilated offline input feeding, and it shows a potential role in improving transport calculation in the ocean with cost-effective computation.


1996 ◽  
Vol 101 (D19) ◽  
pp. 23889-23907 ◽  
Author(s):  
T. N. Krishnamurti ◽  
M. C. Sinha ◽  
M. Kanamitsu ◽  
D. Oosterhof ◽  
H. Fuelberg ◽  
...  

1995 ◽  
Vol 100 (C10) ◽  
pp. 20763 ◽  
Author(s):  
Matthew W. Hecht ◽  
William R. Holland ◽  
Philip J. Rasch

2020 ◽  
Author(s):  
Clément Bricaud ◽  
Julien Le Sommer ◽  
Madec Gurvan ◽  
Christophe Calone ◽  
Julie Deshayes ◽  
...  

Abstract. Ocean biogeochemical models are key tools for both scientific and operational applications. Nevertheless the cost of running these models is often expensive because of the large number of biogeochemical tracers. This has motivated the development of multi-grid approaches where ocean dynamics and tracer transport are computed on grids of different spatial resolution. However, existing multi-grid approaches to tracer transport in ocean modelling do not allow to compute ocean dynamics and tracer transport simultaneously. This paper describes a new multi-grid approach developed for accelerating the computation of passive tracer transport in the NEMO ocean circulation model. In practice, passive tracer transport is computed at runtime on a grid with coarser spatial resolution than the hydrodynamics, which allows to reduce the CPU cost of computing the evolution of tracer. We describe the multi-grid algorithm, its practical implementation in the NEMO ocean model, and discuss its performance on the basis of a series of sensitivity experiments with global ocean model configurations. Our experiments confirm that the spatial resolution of hydrodynamical fields can be coarsened by a factor 3 in both horizontal directions without significantly affecting the resolved passive tracer fields. Overall, the proposed algorithm yields a reduction by a factor 7 of the overhead associated with running a full biogeochemical model like PISCES (with 24 passive tracers). Propositions for reducing further this cost without affecting the resolved solution are discussed.


2015 ◽  
Vol 45 (12) ◽  
pp. 2913-2932 ◽  
Author(s):  
Xiaobiao Xu ◽  
Peter B. Rhines ◽  
Eric P. Chassignet ◽  
William J. Schmitz

AbstractThe oceanic deep circulation is shared between concentrated deep western boundary currents (DWBCs) and broader interior pathways, a process that is sensitive to seafloor topography. This study investigates the spreading and deepening of Denmark Strait overflow water (DSOW) in the western subpolar North Atlantic using two ° eddy-resolving Atlantic simulations, including a passive tracer injected into the DSOW. The deepest layers of DSOW transit from a narrow DWBC in the southern Irminger Sea into widespread westward flow across the central Labrador Sea, which remerges along the Labrador coast. This abyssal circulation, in contrast to the upper levels of overflow water that remain as a boundary current, blankets the deep Labrador Sea with DSOW. Farther downstream after being steered around the abrupt topography of Orphan Knoll, DSOW again leaves the boundary, forming cyclonic recirculation cells in the deep Newfoundland basin. The deep recirculation, mostly driven by the meandering pathway of the upper North Atlantic Current, leads to accumulation of tracer offshore of Orphan Knoll, precisely where a local maximum of chlorofluorocarbon (CFC) inventory is observed. At Flemish Cap, eddy fluxes carry ~20% of the tracer transport from the boundary current into the interior. Potential vorticity is conserved as the flow of DSOW broadens at the transition from steep to less steep continental rise into the Labrador Sea, while around the abrupt topography of Orphan Knoll, potential vorticity is not conserved and the DSOW deepens significantly.


Author(s):  
Ilia Chernov ◽  
Alexey Tolstikov ◽  
Nikolay Iakovlev

We consider advection of floating passive tracer in the White Sea using a hydrodynamical model of sea circulation JASMINE. Simulations show that the Onezhskiy Bay is a hydrodynamical trap for tracers: concentration there decrease more slowly. Typical times needed to remove concentrated tracer completely from bays are estimated. General scheme of tracer advection is described.


Sign in / Sign up

Export Citation Format

Share Document