Melody-Based Approaches in Music Retrieval and Recommendation Systems

Author(s):  
Bartłomiej Stasiak ◽  
Mateusz Papiernik
2020 ◽  
Author(s):  
Uzair Bhatti

BACKGROUND In the era of health informatics, exponential growth of information generated by health information systems and healthcare organizations demands expert and intelligent recommendation systems. It has become one of the most valuable tools as it reduces problems such as information overload while selecting and suggesting doctors, hospitals, medicine, diagnosis etc according to patients’ interests. OBJECTIVE Recommendation uses Hybrid Filtering as one of the most popular approaches, but the major limitations of this approach are selectivity and data integrity issues.Mostly existing recommendation systems & risk prediction algorithms focus on a single domain, on the other end cross-domain hybrid filtering is able to alleviate the degree of selectivity and data integrity problems to a better extent. METHODS We propose a novel algorithm for recommendation & predictive model using KNN algorithm with machine learning algorithms and artificial intelligence (AI). We find the factors that directly impact on diseases and propose an approach for predicting the correct diagnosis of different diseases. We have constructed a series of models with good reliability for predicting different surgery complications and identified several novel clinical associations. We proposed a novel algorithm pr-KNN to use KNN for prediction and recommendation of diseases RESULTS Beside that we compared the performance of our algorithm with other machine algorithms and found better performance of our algorithm, with predictive accuracy improving by +3.61%. CONCLUSIONS The potential to directly integrate these predictive tools into EHRs may enable personalized medicine and decision-making at the point of care for patient counseling and as a teaching tool. CLINICALTRIAL dataset for the trials of patient attached


Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1611
Author(s):  
María Cora Urdaneta-Ponte ◽  
Amaia Mendez-Zorrilla ◽  
Ibon Oleagordia-Ruiz

Recommendation systems have emerged as a response to overload in terms of increased amounts of information online, which has become a problem for users regarding the time spent on their search and the amount of information retrieved by it. In the field of recommendation systems in education, the relevance of recommended educational resources will improve the student’s learning process, and hence the importance of being able to suitably and reliably ensure relevant, useful information. The purpose of this systematic review is to analyze the work undertaken on recommendation systems that support educational practices with a view to acquiring information related to the type of education and areas dealt with, the developmental approach used, and the elements recommended, as well as being able to detect any gaps in this area for future research work. A systematic review was carried out that included 98 articles from a total of 2937 found in main databases (IEEE, ACM, Scopus and WoS), about which it was able to be established that most are geared towards recommending educational resources for users of formal education, in which the main approaches used in recommendation systems are the collaborative approach, the content-based approach, and the hybrid approach, with a tendency to use machine learning in the last two years. Finally, possible future areas of research and development in this field are presented.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 101197-101206
Author(s):  
Diao Zhou ◽  
Shengnan Hao ◽  
Haiyang Zhang ◽  
Chenxu Dai ◽  
Yongli An ◽  
...  

Signals ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 336-352
Author(s):  
Frank Zalkow ◽  
Julian Brandner ◽  
Meinard Müller

Flexible retrieval systems are required for conveniently browsing through large music collections. In a particular content-based music retrieval scenario, the user provides a query audio snippet, and the retrieval system returns music recordings from the collection that are similar to the query. In this scenario, a fast response from the system is essential for a positive user experience. For realizing low response times, one requires index structures that facilitate efficient search operations. One such index structure is the K-d tree, which has already been used in music retrieval systems. As an alternative, we propose to use a modern graph-based index, denoted as Hierarchical Navigable Small World (HNSW) graph. As our main contribution, we explore its potential in the context of a cross-version music retrieval application. In particular, we report on systematic experiments comparing graph- and tree-based index structures in terms of the retrieval quality, disk space requirements, and runtimes. Despite the fact that the HNSW index provides only an approximate solution to the nearest neighbor search problem, we demonstrate that it has almost no negative impact on the retrieval quality in our application. As our main result, we show that the HNSW-based retrieval is several orders of magnitude faster. Furthermore, the graph structure also works well with high-dimensional index items, unlike the tree-based structure. Given these merits, we highlight the practical relevance of the HNSW graph for music information retrieval (MIR) applications.


2021 ◽  
Vol 11 (6) ◽  
pp. 2530
Author(s):  
Minsoo Lee ◽  
Soyeon Oh

Over the past few years, the number of users of social network services has been exponentially increasing and it is now a natural source of data that can be used by recommendation systems to provide important services to humans by analyzing applicable data and providing personalized information to users. In this paper, we propose an information recommendation technique that enables smart recommendations based on two specific types of analysis on user behaviors, such as the user influence and user activity. The components to measure the user influence and user activity are identified. The accuracy of the information recommendation is verified using Yelp data and shows significantly promising results that could create smarter information recommendation systems.


Sign in / Sign up

Export Citation Format

Share Document