Heterogeneity in Microscopic Residual Stress in the Aortic Wall

Author(s):  
Takeo Matsumoto ◽  
Akihisa Fukunaga ◽  
Kengo Narita ◽  
Yohei Uno ◽  
Kazuaki Nagayama
Keyword(s):  
Author(s):  
Sidney D. Kobernick ◽  
Edna A. Elfont ◽  
Neddra L. Brooks

This cytochemical study was designed to investigate early metabolic changes in the aortic wall that might lead to or accompany development of atherosclerotic plaques in rabbits. The hypothesis that the primary cellular alteration leading to plaque formation might be due to changes in either carbohydrate or lipid metabolism led to histochemical studies that showed elevation of G-6-Pase in atherosclerotic plaques of rabbit aorta. This observation initiated the present investigation to determine how early in plaque formation and in which cells this change could be observed.Male New Zealand white rabbits of approximately 2000 kg consumed normal diets or diets containing 0.25 or 1.0 gm of cholesterol per day for 10, 50 and 90 days. Aortas were injected jin situ with glutaraldehyde fixative and dissected out. The plaques were identified, isolated, minced and fixed for not more than 10 minutes. Incubation and postfixation proceeded as described by Leskes and co-workers.


Author(s):  
J. Fang ◽  
H. M. Chan ◽  
M. P. Harmer

It was Niihara et al. who first discovered that the fracture strength of Al2O3 can be increased by incorporating as little as 5 vol.% of nano-size SiC particles (>1000 MPa), and that the strength would be improved further by a simple annealing procedure (>1500 MPa). This discovery has stimulated intense interest on Al2O3/SiC nanocomposites. Recent indentation studies by Fang et al. have shown that residual stress relief was more difficult in the nanocomposite than in pure Al2O3. In the present work, TEM was employed to investigate the microscopic mechanism(s) for the difference in the residual stress recovery in these two materials.Bulk samples of hot-pressed single phase Al2O3, and Al2O3 containing 5 vol.% 0.15 μm SiC particles were simultaneously polished with 15 μm diamond compound. Each sample was cut into two pieces, one of which was subsequently annealed at 1300° for 2 hours in flowing argon. Disks of 3 mm in diameter were cut from bulk samples.


2021 ◽  
Vol 160 ◽  
pp. 107336
Author(s):  
Ziqian Zhang ◽  
Gang Shi ◽  
Xuesen Chen ◽  
Lijun Wang ◽  
Le Zhou

2012 ◽  
Vol 82 (2) ◽  
pp. 85-93 ◽  
Author(s):  
Y. Kim ◽  
H. Shin ◽  
S. Lee

In the present study, the nutritional quality of four grains including adlay (AD), buckwheat (BW), glutinous barley (GB), and white rice (WR) were evaluated in terms of plasma lipid parameters, gut transit time, and thickness of the aortic wall in rats. The rats were then raised for 4 weeks on the high-fat diet based on the American Institute of Nutrition-93 (AIN-93 G) diets containing 1 % cholesterol and 20 % dietary lipids. Forty male rats were divided into 4 groups and raised for 4 weeks with a diet containing one of the following grains: WR, AD, BW, or WB. The level of thiobarbituric acid-reactive substances (TBARS) in liver was shown to be higher in rats by the order of those fed WR, AD, GB, and BW. This indicates that other grains decreased oxidative stress in vivo more than WR. The superoxide dismutase, glutathione, glutathione peroxidase, and glutathione reductase levels in the AD, BW, and GB groups were significantly higher than those in the WR group (p < 0.05). Plasma lipid profiles differed significantly according to grain combination, and decreased aortic wall thickness was consistent with the finding of decreased plasma low-density lipoprotein cholesterol (LDL-C) (p < 0.05) and increased high-density lipoprotein (HDL-C) in rats fed AD, BW, and GB (p < 0.001). The antioxidant and hypolipidemic capacities of grains are quite high, especially those of adlay, buckwheat, and glutinous barley. In conclusion, this study has demonstrated that the whole grains had a cardioprotective effect. This effect was related to several mechanisms that corresponded to lowering plasma lipids, decreasing TBARS, and increasing antioxidant activities.


2020 ◽  
Vol 21 (5) ◽  
pp. 505
Author(s):  
Yousef Ghaderi Dehkordi ◽  
Ali Pourkamali Anaraki ◽  
Amir Reza Shahani

The prediction of residual stress relaxation is essential to assess the safety of welded components. This paper aims to study the influence of various effective parameters on residual stress relaxation under cyclic loading. In this regard, a 3D finite element modeling is performed to determine the residual stress in welded aluminum plates. The accuracy of this analysis is verified through experiment. To study the plasticity effect on stress relaxation, two plasticity models are implemented: perfect plasticity and combined isotropic-kinematic hardening. Hence, cyclic plasticity characterization of the material is specified by low cycle fatigue tests. It is found that the perfect plasticity leads to greater stress relaxation. In order to propose an accurate model to compute the residual stress relaxation, the Taguchi L18 array with four 3-level factors and one 6-level is employed. Using statistical analysis, the order of factors based on their effect on stress relaxation is determined as mean stress, stress amplitude, initial residual stress, and number of cycles. In addition, the stress relaxation increases with an increase in mean stress and stress amplitude.


1969 ◽  
Vol 21 (01) ◽  
pp. 001-011 ◽  
Author(s):  
K Onoyama ◽  
K Tanaka

SummaryThe tissue fibrinolysis was studied in 550 specimens of 7 kinds of arteries from 80 fresh cadavers, using Astrup’s biochemical method and Todd’s histochemical method with human fibrinogen.In the microscopically normal aortic wall, almost all specimens had the fibrinolytic activity which was the strongest in the adventitia and the weakest in the media.The fibrinolytic activity seemed to be localized in the endothelium.The stronger activity lay in the adventitia of the aorta and the pulmonary artery and all layers of the cerebral artery.The activity of the intima and media of the macroscopically normal areas seemed to be stronger in the internal carotid artery than in the common carotid artery.Mean fibrinolytic activity of the macroscopically normal areas seemed to decrease with age in the intima and the media of the thoracic aorta and seemed to be low in the cases with a high atherosclerotic index.The fibrinolytic activities of all three layers of the fibrous thickened aorta seemed to decrease, and those of the media and the adventitia of the atheromatous plaque to increase.The fibrinolytic activity of the arterial wall might play some role in the progress of atherosclerosis.


Sign in / Sign up

Export Citation Format

Share Document