Polariscopy Measurement of Residual Stress in Thin Silicon Wafers

Author(s):  
K. Skenes ◽  
R. G. R. Prasath ◽  
S. Danyluk
Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 429
Author(s):  
Tengyun Liu ◽  
Peiqi Ge ◽  
Wenbo Bi

Lower warp is required for the single crystal silicon wafers sawn by a fixed diamond wire saw with the thinness of a silicon wafer. The residual stress in the surface layer of the silicon wafer is the primary reason for warp, which is generated by the phase transitions, elastic-plastic deformation, and non-uniform distribution of thermal energy during wire sawing. In this paper, an experiment of multi-wire sawing single crystal silicon is carried out, and the Raman spectra technique is used to detect the phase transitions and residual stress in the surface layer of the silicon wafers. Three different wire speeds are used to study the effect of wire speed on phase transition and residual stress of the silicon wafers. The experimental results indicate that amorphous silicon is generated during resin bonded diamond wire sawing, of which the Raman peaks are at 178.9 cm−1 and 468.5 cm−1. The ratio of the amorphous silicon surface area and the surface area of a single crystal silicon, and the depth of amorphous silicon layer increases with the increasing of wire speed. This indicates that more amorphous silicon is generated. There is both compressive stress and tensile stress on the surface layer of the silicon wafer. The residual tensile stress is between 0 and 200 MPa, and the compressive stress is between 0 and 300 MPa for the experimental results of this paper. Moreover, the residual stress increases with the increase of wire speed, indicating more amorphous silicon generated as well.


2014 ◽  
pp. 207-226
Author(s):  
Christof Landesberger ◽  
Christoph Paschke ◽  
Hans-Peter Spöhrle ◽  
Karlheinz Bock

2010 ◽  
Vol 2010 (DPC) ◽  
pp. 001743-001759
Author(s):  
Andy Hooper ◽  
Daragh Finn

3D packaging technologies such as FLASH rely on die-to-die stacking of ultra-thin silicon devices with individual die thicknesses below 100 um. Because ultra-thin silicon wafers are very fragile, mechanical saw dicing of sub 100 um thick wafers tends to be more challenging, requiring slower processing and reduced throughput and/or yields. These challenges make full cut laser dicing an attractive solution. This presentation provides an investigation for machining of 50 um thick silicon wafers using a Gaussian-shaped, nanosecond pulsewidth, 355 nm UV laser. A range of machining speeds and laser fluences are compared, from single laser pulses to highly overlapped slow-velocity machining. 3D Laser Scanning Microscope and FIB/TEM cross sections are employed to characterize the state and depth of heating damage into the Si material. Implications for laser machining rates and die break strength are investigated for full cut laser dicing.


Silicon ◽  
2020 ◽  
Author(s):  
Altyeb Ali Abaker Omer ◽  
Zudong He ◽  
Shihao Hong ◽  
Yuanchih Chang ◽  
Jie Yu ◽  
...  

1998 ◽  
Vol 41 (2) ◽  
pp. 290-296 ◽  
Author(s):  
Keisuke TANAKA ◽  
Yoshiaki AKINIWA ◽  
Kaoru INOUE ◽  
Hiroyuki OHTA

Sign in / Sign up

Export Citation Format

Share Document