A Low-Cost Sensor for Real-Time Monitoring of Indoor Thermal Comfort for Ambient Assisted Living

2014 ◽  
pp. 3-12 ◽  
Author(s):  
Gian Marco Revel ◽  
Marco Arnesano ◽  
Filippo Pietroni
2020 ◽  
Vol 15 ◽  
pp. 155892502097726
Author(s):  
Wei Wang ◽  
Zhiqiang Pang ◽  
Ling Peng ◽  
Fei Hu

Performing real-time monitoring for human vital signs during sleep at home is of vital importance to achieve timely detection and rescue. However, the existing smart equipment for monitoring human vital signs suffers the drawbacks of high complexity, high cost, and intrusiveness, or low accuracy. Thus, it is of great need to develop a simplified, nonintrusive, comfortable and low cost real-time monitoring system during sleep. In this study, a novel intelligent pillow was developed based on a low-cost piezoelectric ceramic sensor. It was manufactured by locating a smart system (consisting of a sensing unit i.e. a piezoelectric ceramic sensor, a data processing unit and a GPRS communication module) in the cavity of the pillow made of shape memory foam. The sampling frequency of the intelligent pillow was set at 1000 Hz to capture the signals more accurately, and vital signs including heart rate, respiratory rate and body movement were derived through series of well established algorithms, which were sent to the user’s app. Validation experimental results demonstrate that high heart-rate detection accuracy (i.e. 99.18%) was achieved in using the intelligent pillow. Besides, human tests were conducted by detecting vital signs of six elder participants at their home, and results showed that the detected vital signs may well predicate their health conditions. In addition, no contact discomfort was reported by the participants. With further studies in terms of validity of the intelligent pillow and large-scale human trials, the proposed intelligent pillow was expected to play an important role in daily sleep monitoring.


Author(s):  
Hasan Tariq ◽  
Farid Touati

Environmental monitoring has gained significant importance in outdoor air quality measurement and assessment for fundamental survival as well as ambient assisted living. In real-time outdoor urban scale, instantaneous air quality index estimation, the electrochemical sensors warm-up time, cross-sensitivity computation-error, geo-location typography, instantaneous capacity or back up time; and energy efficiency are the six major challenges. These challenges lead to real-time gradient anomalies that effect the accuracy and pro-longed lags in air quality index mapping campaigns for state and environmental/meteorological agencies. In this work, a gradient-aware, multi-variable air quality-sensing node is proposed with event-triggered sensing based on position, gas magnitudes, and cross-sensitivity interpolation. In this approach, temperature, humidity, pressure, geo-position, photovoltaic power, volatile organic compounds, particulate matter (2.5), ozone, Carbon mono-oxide, Nitrogen dioxide, and Sulphur dioxide are the principle variables. Results have shown that the proposed system optimized the real-time air quality monitoring for the chosen geo-spatial cluster (Qatar University).


2015 ◽  
Vol 47 (3) ◽  
pp. 236-251 ◽  
Author(s):  
Bambang Kuswandi ◽  
Fitria Damayanti ◽  
Jayus Jayus ◽  
Aminah Abdullah ◽  
Lee Yook Heng

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Alexandros Andre Chaaraoui ◽  
Francisco Flórez-Revuelta

This paper presents a novel silhouette-based feature for vision-based human action recognition, which relies on the contour of the silhouette and a radial scheme. Its low-dimensionality and ease of extraction result in an outstanding proficiency for real-time scenarios. This feature is used in a learning algorithm that by means of model fusion of multiple camera streams builds a bag of key poses, which serves as a dictionary of known poses and allows converting the training sequences into sequences of key poses. These are used in order to perform action recognition by means of a sequence matching algorithm. Experimentation on three different datasets returns high and stable recognition rates. To the best of our knowledge, this paper presents the highest results so far on the MuHAVi-MAS dataset. Real-time suitability is given, since the method easily performs above video frequency. Therefore, the related requirements that applications as ambient-assisted living services impose are successfully fulfilled.


Author(s):  
Panagiotis E. Antoniou ◽  
Evdokimos Konstantinidis ◽  
Antonis S. Billis ◽  
Giorgos Bamparopoulos ◽  
Marianna S. Tsatali ◽  
...  

In this chapter the lessons learnt from the build-up and integration of the USEFIL are demonstrated. First an introduction to Ambient Assisted Living (AAL) platforms, the infrastructure for eHomes of any purpose eHome is presented, in the context of their emergence as a viable way for managing healthcare costs in an aging first world population. Then technical and sustainability issues that are present after several years of maturation are touched upon. The USEFIL project's aim at an AAL platform that utilizes low cost “off-the-shelf” technologies in order to develop immediately applicable services, to assist elderly people in maintaining an independent, healthy lifestyle and program of daily activities is then briefly discussed. Afterwards, the methodological framework as well as principal results of the preparation and running of the pre-piloting phase of that platform are presented. Closing, current trends are explored in conjunction with future directions as triggered by this project in the context of cognitive impaired elderly support.


Sign in / Sign up

Export Citation Format

Share Document