Monitoring Framework for Cost-Effective Energy Consumption in a Building

Author(s):  
Salah Bouktif ◽  
Waleed K. Ahmed
2014 ◽  
Vol 875-877 ◽  
pp. 1895-1898
Author(s):  
A.A. Faieza ◽  
J. Nadarajah

The demand for energy in continues to grow. This projected growth in demand has spurned several initiatives aimed at forestalling potential shortages. The focus is on influencing the energy consumption patterns in industry especially during peak demand times when energy supply systems are strained. Moreover, the modern society has become more sensitive to the impact on the environment. More consumers are aware today of the need to conserve energy. A typical platform will enable industry to reduce electricity usage. The ability to manage energy usage more effectively saves businesses. To ensure the provision of adequate, secure and cost-effective energy supplies, resources using the latest cost options are being utilized. To promote the efficient utilization of energy and discourage wasteful and non-productive patterns of energy consumption, the energy policy's approach is to rely heavily on industry to exercise efficiency in energy conversion, utilization and consumption through the implementation of awareness programs. This research will encourage engineers in industry to evaluate, investigate, discover and discuss the various opportunities available to manage energy in industry utilizing a well-structured and engineered methodology and to consider energy management initiatives seriously.


2015 ◽  
Vol 19 (3) ◽  
pp. 881-892 ◽  
Author(s):  
Aleksandra Dedinec ◽  
Aleksandar Dedinec ◽  
Natasa Markovska

Reducing the energy consumption growth rate is increasingly becoming one of the main challenges for ensuring sustainable development, particularly in the buildings as the largest end-use sector in many countries. Along this line, the aim of this paper is to analyse the possibilities for energy savings in the construction of new buildings and reconstruction of the existing ones developing a tool that, in terms of the available heating technologies and insulation, provides answer to the problem of optimal cost effective energy consumption. The tool is composed of an unsteady heat transfer model which is incorporated into a cost-effective energy saving optimization. The unsteady heat transfer model uses annual hourly meteorological data, chosen as typical for the last ten-year period, as well as thermo physical features of the layers of the building walls. The model is tested for the typical conditions in the city of Skopje, Macedonia. The results show that the most cost effective heating technology for the given conditions is the wood fired stove, followed by the inverter air-conditioner. The centralized district heating and the pellet fired stoves are the next options. The least cost effective option is the panel that uses electricity. In this paper, the optimal insulation thickness is presented for each type of heating technology.


2012 ◽  
Vol E95-C (2) ◽  
pp. 303-308
Author(s):  
Jae Kwang LIM ◽  
Heung-Sik TAE ◽  
Byungcho CHOI ◽  
Seok Gi KIM

2020 ◽  
Vol 1 (1) ◽  
pp. 110-115
Author(s):  
Sayed Belal Hashimi ◽  
Hameedullah Zaheb ◽  
Najib Rahman Sabory

2021 ◽  
Vol 5 (2) ◽  
pp. 17
Author(s):  
Valli Trisha ◽  
Kai Seng Koh ◽  
Lik Yin Ng ◽  
Vui Soon Chok

Limited research of heat integration has been conducted in the oleochemical field. This paper attempts to evaluate the performance of an existing heat exchanger network (HEN) of an oleochemical plant at 600 tonnes per day (TPD) in Malaysia, in which the emphases are placed on the annual saving and reduction in energy consumption. Using commercial HEN numerical software, ASPEN Energy Analyzer v10.0, it was found that the performance of the current HEN in place is excellent, saving over 80% in annual costs and reducing energy consumption by 1,882,711 gigajoule per year (GJ/year). Further analysis of the performance of the HEN was performed to identify the potential optimisation of untapped heating/cooling process streams. Two cases, which are the most cost-effective and energy efficient, were proposed with positive results. However, the second case performed better than the first case, at a lower payback time (0.83 year) and higher annual savings (0.20 million USD/year) with the addition of one heat exchanger at a capital cost of USD 134,620. The first case had a higher payback time (4.64 years), a lower annual saving (0.05 million USD/year) and three additional heaters at a capital cost of USD 193,480. This research has provided a new insight into the oleochemical industry in which retrofitting the HEN can further reduce energy consumption, which in return will reduce the overall production cost of oleochemical commodities. This is particularly crucial in making the product more competitive in its pricing in the global market.


Energy ◽  
2021 ◽  
pp. 120488
Author(s):  
Hassan Qudrat-Ullah ◽  
Aymen Kayal ◽  
Andrew Mugumya

Author(s):  
Capobianchi Simona ◽  
Andreassi Luca ◽  
Introna Vito ◽  
Martini Fabrizio ◽  
Ubertini Stefano

2018 ◽  
Vol 42 ◽  
pp. 01003
Author(s):  
Sentagi Sesotya Utami ◽  
Faridah ◽  
Na’im A. Azizi ◽  
Erlin Kencanawati ◽  
M. Akbar Tanjung ◽  
...  

Current studies conducted by JICA, AMPRI and IFC-World Bank, reported that large commercial buildings in Indonesia are not energy and water efficient. One of the cause is the lack of regulation. Meanwhile, effective regulations to reduce energy and water consumption are the concern mostly in a new building to obtain a building permit. This strategy is understandable as retrofitting existing buildings are often more difficult to be implemented, and enforcement is still a major issue in Indonesia. Local governments are currently working on streamlining building permit process as well as developing an online monitoring system for existing buildings. By applying a Building Energy Management System (BEMS) enables to reduce energy consumption up to 15%. An energy monitoring system was designed and installed through this research for Department of Nuclear Engineering and Engineering Physics (DNEEP) building, Faculty of Engineering, Universitas Gadjah Mada. It is a 20 years old two-story building used for educational activities, which consist of classrooms, laboratories, offices and storage spaces. An audit energy was done recently in 2015 where an energy consumption of 261.299,636 kWh/year.m2 was reported. In the existing condition, a power meter is inaccessible and therefore, the only feedback of occupancy behavior in the energy consumption is through the electricity bill. The previous study has shown that building occupants would behave more efficiently if the amount of energy used is notified, and the amount of energy savings are recorded. However, these energy monitoring systems are considered expensive and uniquely tailored for every building. This research aims to design and install a cost effective BEMS based on occupant’s satisfactory assessment of the lighting, acoustics, and air conditioning quality. The data will be used as a decision supporting system (DSS) by building management through the use of a GUI. The design of the interface was based on a survey result from the prospective users. Installed energy monitoring system uses a current sensor with an accuracy of 98% and a precision of 0.04 A while the voltage sensor with an accuracy of 98% and a precision of 0.58 V. The performance testing shows that the number of web clients influences delay of data transmission. The result of the survey shows that GUI is categorized as fair in design without a significant difference between the perceptions of users with and without survey supervision.


Sign in / Sign up

Export Citation Format

Share Document