Soil Fertility and Crop Productivity in African Sustainable Agriculture

2014 ◽  
pp. 257-291
Author(s):  
Alfred Oghode Misaiti Okorogbona ◽  
Patrick Olusanmi Adebola
2021 ◽  
pp. 41-64
Author(s):  
Priyanka Verma* ◽  
Dheer Singh ◽  
Ishwar Prasad Pathania ◽  
Komal Aggarwal

2021 ◽  
Vol 13 (3) ◽  
pp. 1330
Author(s):  
Muhammad Ayaz ◽  
Dalia Feizienė ◽  
Vita Tilvikienė ◽  
Kashif Akhtar ◽  
Urte Stulpinaitė ◽  
...  

The exercise of biochar in agribusiness has increased proportionally in recent years. It has been indicated that biochar application could strengthen soil fertility benefits, such as improvement in soil microbial activity, abatement of bulk density, amelioration of nutrient and water-holding capacity and immutability of soil organic matter. Additionally, biochar amendment could also improve nutrient availability such as phosphorus and nitrogen in different types of soil. Most interestingly, the locally available wastes are pyrolyzed to biochar to improve the relationship among plants, soil and the environment. This can also be of higher importance to small-scale farming, and the biochar produced can be utilized in farms for the improvement of crop productivity. Thus, biochar could be a potential amendment to a soil that could help in achieving sustainable agriculture and environment. However, before mainstream formulation and renowned biochar use, several challenges must be taken into consideration, as the beneficial impacts and potential use of biochar seem highly appealing. This review is based on confined knowledge taken from different field-, laboratory- and greenhouse-based studies. It is well known that the properties of biochar vary with feedstock, pyrolysis temperature (300, 350, 400, 500, and 600 °C) and methodology of preparation. It is of high concern to further investigate the negative consequences: hydrophobicity; large scale application in farmland; production cost, primarily energy demand; and environmental threat, as well as affordability of feedstock. Nonetheless, the current literature reflects that biochar could be a significant amendment to the agroecosystem in order to tackle the challenges and threats observed in sustainable agriculture (crop production and soil fertility) and the environment (reducing greenhouse gas emission).


2014 ◽  
Vol 13 (1) ◽  
pp. 66 ◽  
Author(s):  
Deepak Bhardwaj ◽  
Mohammad Ansari ◽  
Ranjan Sahoo ◽  
Narendra Tuteja

2012 ◽  
pp. 41-42
Author(s):  
Natalia Makarenko ◽  
Valeria Bondor ◽  
Volodymur Makarenko

Shown the expediency of the environmental expertise technologies of growing crops in terms of impact on soil fertility, crop phytosanitary status, quality, chemicals migration, biological soil activity, crop productivity, which ensure avoidance of adverse impact on the environment and human health.


2018 ◽  
Vol 98 (3) ◽  
pp. 531-541
Author(s):  
Qingyin Zhang ◽  
Ming’an Shao

Change in land use causes changes in soil properties and soil fertility, with long-term effects on ecosystem and crop productivity. This study determined soil fertility along sequential conversion of cropland to grassland in China’s Loess Plateau. Soil samples were collected in 2015 at two sites in the semiarid region, following the conversion of cropland to grassland. Soil particle-size distribution, bulk density, pH, organic carbon (OC), total nitrogen (TN), total phosphorus (TP), available potassium, and available phosphorus were measured in this study. In addition, we analysed the changes of soil OC, TN, and TP, and evaluated soil fertility after the conversion from cropland to grassland. The establishment of grassland significantly increased soil OC, N, and P content, especially in the 0–10 cm soil layer. The highest change in soil OC, N, and P content occurred 6–10 yr after land conversion. The measured soil variables did not change significantly after 10 yr of land conversion. The overall increase in soil fertility after the land conversion was 13% at one site and 26% at the other site. The results suggested that establishing grassland could enhance soil fertility in the semiarid Loess Plateau region of China, and this enhancement is optimal 6–10 yr after the establishment of grassland.


2018 ◽  
Vol 10 (4) ◽  
pp. 158 ◽  
Author(s):  
Mary Nanyanzi ◽  
Elizabeth Balyejusa Kizito ◽  
Michael Masanza ◽  
Godfrey Sseruwu ◽  
Moses Makoma Tenywa

Poor soil fertility remains the major cause of low crop productivity on smallholder farms that are engaging in vegetable production in sub-Saharan Africa. Appropriate soil fertility regimes are therefore critical for improving crop productivity. Its yield has remained low mainly due to poor soil fertility. A field experiment in two different seasons was planted in a Completely Randomized Block Design using Solanum aethiopicum Shum (Nakati). The treatments were 3 sole fertilizer options applied at the following rates: poultry manure and bio-slurry manure at 5, 10, 15, 20, 25 and 30 t ha-1, NPK (25:5:5) at the recommend application rate for tomato which is a sister crop and a control without any fertilizer. Crop budgets were used to determine the economic optimum rates of both sole applications of manure and combinations of manure with NPK. The sole applications and showed significantly (p ≤ 0.05) increased the yield of S. aethiopicum compared with the control. The established biological optimum rates were at 24.19 t ha-1 and 21.51 t ha-1 for poultry manure and bio-slurry respectively. Using the crop budgets it was concluded that the established economic optimum rates were 20 t ha-1 and 10 t ha-1 for sole poultry manure and bio-slurry respectively. Recommendations for use of sole poultry manure and bio- slurry at the rate of 20 t ha-1 and 10 t ha-1 respectively were made.


Plants ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 276 ◽  
Author(s):  
Vinay Sharma ◽  
Samrat Bhattacharyya ◽  
Rakesh Kumar ◽  
Ashish Kumar ◽  
Fernando Ibañez ◽  
...  

Nitrogen is one of the essential plant nutrients and a major factor limiting crop productivity. To meet the requirements of sustainable agriculture, there is a need to maximize biological nitrogen fixation in different crop species. Legumes are able to establish root nodule symbiosis (RNS) with nitrogen-fixing soil bacteria which are collectively called rhizobia. This mutualistic association is highly specific, and each rhizobia species/strain interacts with only a specific group of legumes, and vice versa. Nodulation involves multiple phases of interactions ranging from initial bacterial attachment and infection establishment to late nodule development, characterized by a complex molecular signalling between plants and rhizobia. Characteristically, legumes like groundnut display a bacterial invasion strategy popularly known as “crack-entry’’ mechanism, which is reported approximately in 25% of all legumes. This article accommodates critical discussions on the bacterial infection mode, dynamics of nodulation, components of symbiotic signalling pathway, and also the effects of abiotic stresses and phytohormone homeostasis related to the root nodule symbiosis of groundnut and Bradyrhizobium. These parameters can help to understand how groundnut RNS is programmed to recognize and establish symbiotic relationships with rhizobia, adjusting gene expression in response to various regulations. This review further attempts to emphasize the current understanding of advancements regarding RNS research in the groundnut and speculates on prospective improvement possibilities in addition to ways for expanding it to other crops towards achieving sustainable agriculture and overcoming environmental challenges.


2020 ◽  
Vol 117 (2) ◽  
pp. 169-184
Author(s):  
Xianfeng Zhang ◽  
Wenliang Yang ◽  
Xiuli Xin ◽  
Anning Zhu ◽  
Shijie Ding

Sign in / Sign up

Export Citation Format

Share Document