Automatic Feature Learning to Grade Nuclear Cataracts Based on Deep Learning

Author(s):  
Xinting Gao ◽  
Stephen Lin ◽  
Tien Yin Wong
2021 ◽  
Author(s):  
Huan Zhang ◽  
Zhao Zhang ◽  
Haijun Zhang ◽  
Yi Yang ◽  
Shuicheng Yan ◽  
...  

<div>Deep learning based image inpainting methods have improved the performance greatly due to powerful representation ability of deep learning. However, current deep inpainting methods still tend to produce unreasonable structure and blurry texture, implying that image inpainting is still a challenging topic due to the ill-posed property of the task. To address these issues, we propose a novel deep multi-resolution learning-based progressive image inpainting method, termed MR-InpaintNet, which takes the damaged images of different resolutions as input and then fuses the multi-resolution features for repairing the damaged images. The idea is motivated by the fact that images of different resolutions can provide different levels of feature information. Specifically, the low-resolution image provides strong semantic information and the high-resolution image offers detailed texture information. The middle-resolution image can be used to reduce the gap between low-resolution and high-resolution images, which can further refine the inpainting result. To fuse and improve the multi-resolution features, a novel multi-resolution feature learning (MRFL) process is designed, which is consisted of a multi-resolution feature fusion (MRFF) module, an adaptive feature enhancement (AFE) module and a memory enhanced mechanism (MEM) module for information preservation. Then, the refined multi-resolution features contain both rich semantic information and detailed texture information from multiple resolutions. We further handle the refined multiresolution features by the decoder to obtain the recovered image. Extensive experiments on the Paris Street View, Places2 and CelebA-HQ datasets demonstrate that our proposed MRInpaintNet can effectively recover the textures and structures, and performs favorably against state-of-the-art methods.</div>


2019 ◽  
Author(s):  
Suhas Srinivasan ◽  
Nathan T. Johnson ◽  
Dmitry Korkin

AbstractSingle-cell RNA sequencing (scRNA-seq) is a recent technology that enables fine-grained discovery of cellular subtypes and specific cell states. It routinely uses machine learning methods, such as feature learning, clustering, and classification, to assist in uncovering novel information from scRNA-seq data. However, current methods are not well suited to deal with the substantial amounts of noise that is created by the experiments or the variation that occurs due to differences in the cells of the same type. Here, we develop a new hybrid approach, Deep Unsupervised Single-cell Clustering (DUSC), that integrates feature generation based on a deep learning architecture with a model-based clustering algorithm, to find a compact and informative representation of the single-cell transcriptomic data generating robust clusters. We also include a technique to estimate an efficient number of latent features in the deep learning model. Our method outperforms both classical and state-of-the-art feature learning and clustering methods, approaching the accuracy of supervised learning. The method is freely available to the community and will hopefully facilitate our understanding of the cellular atlas of living organisms as well as provide the means to improve patient diagnostics and treatment.


2020 ◽  
Author(s):  
Keiller Nogueira ◽  
William Robson Schwartz ◽  
Jefersson Alex Dos Santos

A lot of information may be extracted from the Earth’s surface through aerial images. This information may assist in myriad applications, such as urban planning, crop and forest management, disaster relief, etc. However, the process of distilling this information is strongly based on efficiently encoding the spatial features, a challenging task. Facing this, Deep Learning is able to learn specific data-driven features. This PhD thesis1 introduces deep learning into the remote sensing domain. Specifically, we tackled two main tasks, scene and pixel classification, using Deep Learning to encode spatial features over high-resolution remote sensing images. First, we proposed an architecture and analyze different strategies to exploit Convolutional Networks for image classification. Second, we introduced a network and proposed a new strategy to better exploit multi-context information in order to improve pixelwise classification. Finally, we proposed a new network based on morphological operations towards better learning of some relevant visual features.


2021 ◽  
Author(s):  
Shuren Chou

&lt;p&gt;Deep learning has a good capacity of hierarchical feature learning from unlabeled remote sensing images. In this study, the simple linear iterative clustering (SLIC) method was improved to segment the image into good quality super-pixels. Then, we used the convolutional neural network (CNN) to extract of water bodies from Sentinel-2 MSI data using deep learning technique. In the proposed framework, the improved SLIC method obtained the correct water bodies boundary by optimizing the initial clustering center, designing a dynamic distance measure, and expanding the search space. In addition, it is different from traditional extraction of water bodies methods that cannot achieve multi-level water bodies detection. Experimental results showed that this method had higher detection accuracy and robustness than other methods. This study was able to extract water bodies from remotely sensed images with deep learning and to conduct accuracy assessment.&lt;/p&gt;


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Hao Zhang ◽  
Qiang Zhang ◽  
Siyu Shao ◽  
Tianlin Niu ◽  
Xinyu Yang ◽  
...  

Deep learning has a strong feature learning ability, which has proved its effectiveness in fault prediction and remaining useful life prediction of rotatory machine. However, training a deep network from scratch requires a large amount of training data and is time-consuming. In the practical model training process, it is difficult for the deep model to converge when the parameter initialization is inappropriate, which results in poor prediction performance. In this paper, a novel deep learning framework is proposed to predict the remaining useful life of rotatory machine with high accuracy. Firstly, model parameters and feature learning ability of the pretrained model are transferred to the new network by means of transfer learning to achieve reasonable initialization. Then, the specific sensor signals are converted to RGB image as the specific task data to fine-tune the parameters of the high-level network structure. The features extracted from the pretrained network are the input into the Bidirectional Long Short-Term Memory to obtain the RUL prediction results. The ability of LSTM to model sequence signals and the dynamic learning ability of bidirectional propagation to time information contribute to accurate RUL prediction. Finally, the deep model proposed in this paper is tested on the sensor signal dataset of bearing and gearbox. The high accuracy prediction results show the superiority of the transfer learning-based sequential network in RUL prediction.


Energies ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 4522
Author(s):  
Xihui Chen ◽  
Aimin Ji ◽  
Gang Cheng

Planetary gear is the key component of the transmission system of electromechanical equipment for energy industry, and it is easy to damage, which affects the reliability and operation efficiency of electromechanical equipment of energy industry. Therefore, it is of great significance to extract the useful fault features and diagnose faults based on raw vibration signals. In this paper, a novel deep feature learning method based on the fused-stacked autoencoders (AEs) for planetary gear fault diagnosis was proposed. First, to improve the data learning ability and the robustness of feature extraction process of AE model, the sparse autoencoder (SAE) and the contractive autoencoder (CAE) were studied, respectively. Then, the quantum ant colony algorithm (QACA) was used to optimize the specific location and key parameters of SAEs and CAEs in deep learning architecture, and multiple SAEs and multiple CAEs were stacked alternately to form a novel deep learning architecture, which gave the deep learning architecture better data learning ability and robustness of feature extraction. The experimental results show that the proposed method can address the raw vibration signals of planetary gear. Compared with other deep learning architectures and shallow learning architecture, the proposed method has better diagnosis performance, and it is an effective method of deep feature learning and fault diagnosis.


Author(s):  
Jun Yi Li ◽  
Jian Hua Li

As we know, the nearest neighbor search is a good and effective method for good-sized image search. This paper mainly introduced how to learn an outstanding image feature representation form and a series of compact binary Hash coding functions under deep learning framework. Our concept is that binary codes can be obtained using a hidden layer to present some latent concepts dominating the class labels with usable data labels. Our method is effective in obtaining hash codes and image representations, so it is suitable for good-sized dataset. It is demonstrated in our experiment that the performances of the proposed algorithms were then verified on three different databases, MNIST, CIFAR-10 and Caltech-101. The experimental results reveal that two-proposed image Hash retrieval algorithm based on pixel-level automatic feature learning show higher search accuracy than the other algorithms; moreover, these two algorithms were proved to be more favorable in scalability and generality.


2016 ◽  
Vol 2 (4) ◽  
pp. 265-278 ◽  
Author(s):  
Guoqiang Zhong ◽  
Li-Na Wang ◽  
Xiao Ling ◽  
Junyu Dong

Sign in / Sign up

Export Citation Format

Share Document