scholarly journals Star Formation and Dynamics in the Galactic Centre

Author(s):  
Michela Mapelli ◽  
Alessia Gualandris
2021 ◽  
Vol 502 (1) ◽  
pp. 1246-1252
Author(s):  
M Zoccali ◽  
E Valenti ◽  
F Surot ◽  
O A Gonzalez ◽  
A Renzini ◽  
...  

ABSTRACT We analyse the near-infrared colour–magnitude diagram of a field including the giant molecular cloud G0.253+0.016 (a.k.a. The Brick) observed at high spatial resolution, with HAWK-I@VLT. The distribution of red clump stars in a line of sight crossing the cloud, compared with that in a direction just beside it, and not crossing it, allow us to measure the distance of the cloud from the Sun to be 7.20, with a statistical uncertainty of ±0.16 and a systematic error of ±0.20 kpc. This is significantly closer than what is generally assumed, i.e. that the cloud belongs to the near side of the central molecular zone, at 60 pc from the Galactic centre. This assumption was based on dynamical models of the central molecular zone, observationally constrained uniquely by the radial velocity of this and other clouds. Determining the true position of the Brick cloud is relevant because this is the densest cloud of the Galaxy not showing any ongoing star formation. This puts the cloud off by one order of magnitude from the Kennicutt–Schmidt relation between the density of the dense gas and the star formation rate. Several explanations have been proposed for this absence of star formation, most of them based on the dynamical evolution of this and other clouds, within the Galactic centre region. Our result emphasizes the need to include constraints coming from stellar observations in the interpretation of our Galaxy’s central molecular zone.


2020 ◽  
Vol 495 (1) ◽  
pp. 199-223 ◽  
Author(s):  
Jindra Gensior ◽  
J M Diederik Kruijssen ◽  
Benjamin W Keller

ABSTRACT Quenched galaxies are often observed to contain a strong bulge component. The key question is whether this reflects a causal connection – can star formation be quenched dynamically by bulges or the spheroids of early-type galaxies? We systematically investigate the impact of these morphological components on star formation, by performing a suite of hydrodynamical simulations of isolated galaxies containing a spheroid. We vary the bulge mass and scale radius, while the total initial stellar, halo, and gas mass are kept constant, with a gas fraction of 5 per cent. In addition, we consider two different sub-grid star formation prescriptions. The first follows most simulations in the literature by assuming a constant star formation efficiency per free-fall time, whereas in the second model it depends on the gas virial parameter, following high-resolution simulations of turbulent fragmentation. Across all simulations, central spheroids increase the gas velocity dispersion towards the galactic centre. This increases the gravitational stability of the gas disc, suppresses fragmentation and star formation, and results in galaxies hosting extremely smooth and quiescent gas discs that fall below the galaxy main sequence. These effects amplify when using the more sophisticated, dynamics-dependent star formation model. Finally, we discover a pronounced relation between the central stellar surface density and star formation rate (SFR), such that the most bulge-dominated galaxies show the strongest deviation from the main sequence. We conclude that the SFR of galaxies is not only set by the balance between accretion and feedback, but carries a (sometimes dominant) dependence on the gravitational potential.


2020 ◽  
Vol 493 (1) ◽  
pp. 199-233 ◽  
Author(s):  
C S Ogbodo ◽  
J A Green ◽  
J R Dawson ◽  
S L Breen ◽  
S A Mao ◽  
...  

ABSTRACT From targeted observations of ground-state hydroxyl (OH) masers towards 702 Methanol Multibeam survey 6.7-GHz methanol masers, in the Galactic longitude range from 186° through the Galactic Centre to 20°, made as part of the ‘MAGMO’ (Mapping the Galactic Magnetic field through OH masers) project, we present the physical and polarization properties of the 1720-MHz OH maser transition, including the identification of Zeeman pairs. We present 10 new and 23 previously catalogued 1720-MHz OH maser sources detected towards star-forming regions (SFRs). In addition, we also detected 16 1720-MHz OH masers associated with supernova remnants and two sites of diffuse OH emission. Towards the 33 star formation masers, we identify 44 Zeeman pairs, implying magnetic field strengths ranging from −11.4 to +13.2 mG, and a median magnetic field strength of |BLOS| ∼ 6 mG. With limited statistics, we present the in situ magnetic field orientation of the masers and the Galactic magnetic field distribution revealed by the 1720-MHz transition. We also examine the association statistics of 1720-MHz OH SFR masers with other ground-state OH masers, excited-state OH masers, class I and class II methanol masers, and water masers, and compare maser positions with mid-infrared images of the parent SFRs. Of the 33 1720-MHz star formation masers, 10 are offset from their central exciting sources, and appear to be associated with outflow activity.


2020 ◽  
Vol 497 (4) ◽  
pp. 4614-4625
Author(s):  
Antonio Hernán-Caballero ◽  
Henrik W W Spoon ◽  
Almudena Alonso-Herrero ◽  
Evanthia Hatziminaoglou ◽  
Georgios E Magdis ◽  
...  

ABSTRACT We present a method for recovering the intrinsic (extinction-corrected) luminosity of the 11.2 μm PAH band in galaxy spectra. Using 105 high S/N Spitzer/IRS spectra of star-forming galaxies, we show that the equivalent width ratio of the 12.7 and 11.2 μm PAH bands is independent on the optical depth (τ), with small dispersion (∼5 per cent) indicative of a nearly constant intrinsic flux ratio Rint = (f12.7/f11.2)int = 0.377 ± 0.020. Conversely, the observed flux ratio, Robs = (f12.7/f11.2)obs, strongly correlates with the silicate strength (Ssil) confirming that differences in Robs reflect variation in τ. The relation between Robs and Ssil reproduces predictions for the Galactic Centre extinction law but disagrees with other laws. We calibrate the total extinction affecting the 11.2 μm PAH from Robs, which we apply to another sample of 215 galaxies with accurate measurements of the total infrared luminosity (LIR) to investigate the impact of extinction on L11.2/LIR. Correlation between L11.2/LIR and Robs independently on LIR suggests that increased extinction explains the well-known decrease in the average L11.2/LIR at high LIR. The extinction-corrected L11.2 is proportional to LIR in the range LIR = 109–1013 L⊙. These results consolidate L11.2 as a robust tracer of star formation in galaxies.


2019 ◽  
Vol 490 (4) ◽  
pp. 5820-5831 ◽  
Author(s):  
Alessandra Mastrobuono-Battisti ◽  
Hagai B Perets ◽  
Alessia Gualandris ◽  
Nadine Neumayer ◽  
Anna C Sippel

ABSTRACT Studies of the Galactic Centre suggest that in situ star formation may have given rise to the observed stellar population near the central supermassive black hole (SMBH). Direct evidence for a recent starburst is provided by the currently observed young stellar disc (2–7 Myr) in the central 0.5 pc of the Galaxy. This result suggests that star formation in galactic nuclei may occur close to the SMBH and produce initially flattened stellar discs. Here, we explore the possible build-up and evolution of nuclear stellar clusters near SMBHs through in situ star formation producing stellar discs similar to those observed in the Galactic Centre and other nuclei. We use N-body simulations to model the evolution of multiple young stellar discs and explore the potential observable signatures imprinted by such processes. Each of the five simulated discs is evolved for 100 Myr before the next one is introduced in the system. We find that populations born at different epochs show different morphologies and kinematics. Older and presumably more metal-poor populations are more relaxed and extended, while younger populations show a larger amount of rotation and flattening. We conclude that star formation in central discs can reproduce the observed properties of multiple stellar populations in galactic nuclei differing in age, metallicity, and kinematic properties.


2016 ◽  
Vol 11 (S322) ◽  
pp. 123-128 ◽  
Author(s):  
C. Federrath ◽  
J. M. Rathborne ◽  
S. N. Longmore ◽  
J. M. D. Kruijssen ◽  
J. Bally ◽  
...  

AbstractStar formation in the Galactic disc is primarily controlled by gravity, turbulence, and magnetic fields. It is not clear that this also applies to star formation near the Galactic Centre. Here we determine the turbulence and star formation in the CMZ cloud G0.253+0.016. Using maps of 3 mm dust emission and HNCO intensity-weighted velocity obtained with ALMA, we measure the volume-density variance σρ /ρ 0=1.3±0.5 and turbulent Mach number $\mathcal{M}$ = 11±3. Combining these with turbulence simulations to constrain the plasma β = 0.34±0.35, we reconstruct the turbulence driving parameter b=0.22±0.12 in G0.253+0.016. This low value of b indicates solenoidal (divergence-free) driving of the turbulence in G0.253+0.016. By contrast, typical clouds in the Milky Way disc and spiral arms have a significant compressive (curl-free) driving component (b > 0.4). We speculate that shear causes the solenoidal driving in G0.253+0.016 and show that this may reduce the star formation rate by a factor of 7 compared to nearby clouds.


Author(s):  
F. Schuller ◽  
F. Bertoldi ◽  
M. Felli ◽  
K.M. Menten ◽  
A. Omont ◽  
...  

2007 ◽  
Vol 3 (S245) ◽  
pp. 161-164 ◽  
Author(s):  
Witold Maciejewski

AbstractIn central regions of non-axisymmetric galaxies high-resolution hydrodynamical simulations indicate spiral shocks, which are capable of transporting gas inwards. The efficiency of transport is lower at smaller radii, therefore instead of all gas dropping onto the galactic centre, a roughly uniform distribution of high-density gas develops in the gaseous nuclear spiral downstream from the shock, and the shear in gas is very low there. These are excellent conditions for star formation. This mechanism is likely to contribute to the process of (pseudo-) bulge formation.


2015 ◽  
Vol 451 (4) ◽  
pp. 3679-3692 ◽  
Author(s):  
Erik Bertram ◽  
Simon C. O. Glover ◽  
Paul C. Clark ◽  
Ralf S. Klessen

2011 ◽  
Vol 7 (S284) ◽  
pp. 371-378
Author(s):  
Roland M. Crocker

AbstractThe Galactic centre – as the closest galactic nucleus – holds both intrinsic interest and possibly represents a useful analogue to starburst nuclei which we can observe with orders of magnitude finer detail than these external systems. The environmental conditions in the GC – here taken to mean the inner 200 pc in diameter of the Milky Way – are extreme with respect to those typically encountered in the Galactic disk. The energy densities of the various GC ISM components are typically ~two orders of magnitude larger than those found locally and the star-formation rate density ~three orders of magnitude larger. Unusually within the Galaxy, the Galactic centre exhibits hard-spectrum, diffuse TeV (=1012 eV) gamma-ray emission spatially coincident with the region's molecular gas. Recently the nuclei of local starburst galaxies NGC 253 and M82 have also been detected in gamma-rays of such energies. We have embarked on an extended campaign of modelling the broadband (radio continuum to TeV gamma-ray), non- thermal signals received from the inner 200 pc of the Galaxy. On the basis of this modelling we find that star-formation and associated supernova activity is the ultimate driver of the region's non-thermal activity. This activity drives a large-scale wind of hot plasma and cosmic rays out of the GC. The wind advects the locally-accelerated cosmic rays quickly, before they can lose much energy in situ or penetrate into the densest molecular gas cores where star-formation occurs. The cosmic rays can, however, heat/ionize the lower density/warm H2 phase enveloping the cores. On very large scales (~10 kpc) the non-thermal signature of the escaping GC cosmic rays has probably been detected recently as the spectacular ‘Fermi bubbles’ and corresponding ‘YWMAP haze’.


Sign in / Sign up

Export Citation Format

Share Document