Sentiment Analysis Using ConceptNet Ontology and Context Information

Author(s):  
Basant Agarwal ◽  
Namita Mittal
2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Basant Agarwal ◽  
Namita Mittal ◽  
Pooja Bansal ◽  
Sonal Garg

Sentiment analysis research has been increasing tremendously in recent times due to the wide range of business and social applications. Sentiment analysis from unstructured natural language text has recently received considerable attention from the research community. In this paper, we propose a novel sentiment analysis model based on common-sense knowledge extracted from ConceptNet based ontology and context information. ConceptNet based ontology is used to determine the domain specific concepts which in turn produced the domain specific important features. Further, the polarities of the extracted concepts are determined using the contextual polarity lexicon which we developed by considering the context information of a word. Finally, semantic orientations of domain specific features of the review document are aggregated based on the importance of a feature with respect to the domain. The importance of the feature is determined by the depth of the feature in the ontology. Experimental results show the effectiveness of the proposed methods.


2010 ◽  
Vol 41 (3) ◽  
pp. 131-136 ◽  
Author(s):  
Catharina Casper ◽  
Klaus Rothermund ◽  
Dirk Wentura

Processes involving an automatic activation of stereotypes in different contexts were investigated using a priming paradigm with the lexical decision task. The names of social categories were combined with background pictures of specific situations to yield a compound prime comprising category and context information. Significant category priming effects for stereotypic attributes (e.g., Bavarians – beer) emerged for fitting contexts (e.g., in combination with a picture of a marquee) but not for nonfitting contexts (e.g., in combination with a picture of a shop). Findings indicate that social stereotypes are organized as specific mental schemas that are triggered by a combination of category and context information.


Author(s):  
Veronika Lerche ◽  
Ursula Christmann ◽  
Andreas Voss

Abstract. In experiments by Gibbs, Kushner, and Mills (1991) , sentences were supposedly either authored by poets or by a computer. Gibbs et al. (1991) concluded from their results that the assumed source of the text influences speed of processing, with a higher speed for metaphorical sentences in the Poet condition. However, the dependent variables used (e.g., mean RTs) do not allow clear conclusions regarding processing speed. It is also possible that participants had prior biases before the presentation of the stimuli. We conducted a conceptual replication and applied the diffusion model ( Ratcliff, 1978 ) to disentangle a possible effect on processing speed from a prior bias. Our results are in accordance with the interpretation by Gibbs et al. (1991) : The context information affected processing speed, not a priori decision settings. Additionally, analyses of model fit revealed that the diffusion model provided a good account of the data of this complex verbal task.


Author(s):  
Agung Eddy Suryo Saputro ◽  
Khairil Anwar Notodiputro ◽  
Indahwati A

In 2018, Indonesia implemented a Governor's Election which included 17 provinces. For several months before the Election, news and opinions regarding the Governor's Election were often trending topics on Twitter. This study aims to describe the results of sentiment mining and determine the best method for predicting sentiment classes. Sentiment mining is based on Lexicon. While the methods used for sentiment analysis are Naive Bayes and C5.0. The results showed that the percentage of positive sentiment in 17 provinces was greater than the negative and neutral sentiments. In addition, method C5.0 produces a better prediction than Naive Bayes.


Author(s):  
Yanlei Gu ◽  
Dailin Li ◽  
Yoshihiko Kamiya ◽  
Shunsuke Kamijo

Corpora ◽  
2019 ◽  
Vol 14 (3) ◽  
pp. 327-349
Author(s):  
Craig Frayne

This study uses the two largest available American English language corpora, Google Books and the Corpus of Historical American English (coha), to investigate relations between ecology and language. The paper introduces ecolinguistics as a promising theme for corpus research. While some previous ecolinguistic research has used corpus approaches, there is a case to be made for quantitative methods that draw on larger datasets. Building on other corpus studies that have made connections between language use and environmental change, this paper investigates whether linguistic references to other species have changed in the past two centuries and, if so, how. The methodology consists of two main parts: an examination of the frequency of common names of species followed by aspect-level sentiment analysis of concordance lines. Results point to both opportunities and challenges associated with applying corpus methods to ecolinguistc research.


Sign in / Sign up

Export Citation Format

Share Document