scholarly journals Frequency Tuning of the Efferent Effect on Cochlear Gain in Humans

Author(s):  
Vit Drga ◽  
Christopher J. Plack ◽  
Ifat Yasin
2012 ◽  
Vol 108 (1) ◽  
pp. 25-30 ◽  
Author(s):  
Wei Zhao ◽  
Sumitrajit Dhar

Activation of the medial olivocochlear (MOC) efferents attenuates cochlear gain and reduces the amplitudes of mechanical, electrical, and neural cochlear outputs. The functional roles of the MOC efferents are not fully understood, especially in humans, despite postulations that they are involved in protection against acoustic trauma, facilitation of transient-sound perception, etc. Delineating the frequency tuning properties of the MOC efferents would provide critical evidence to support or refute these postulated functional roles. By utilizing spontaneous otoacoustic emissions (SOAEs), a cochlear measure sensitive to MOC modulation, we systematically demonstrate in humans that the contralateral MOC reflex is tuned to a fixed frequency band between 500 and 1,000 Hz independent of SOAE frequency. Our results question the role of the MOC reflex in protection against acoustic trauma or facilitation of transient-sound perception.


2008 ◽  
Vol 128 (7) ◽  
pp. 1015-1022
Author(s):  
Sheng Ge ◽  
Makoto Ichikawa ◽  
Atsushi Osa ◽  
Keiji Iramina ◽  
Hidetoshi Miike

2016 ◽  
Vol 75 (10) ◽  
pp. 887-894 ◽  
Author(s):  
R. I. Bilous ◽  
A. P. Motornenko ◽  
I. G. Skuratovskiy ◽  
O. I. Khazov

2012 ◽  
Vol 39 (11) ◽  
pp. 1082-1088
Author(s):  
Yin-Ting PENG ◽  
Qing PU ◽  
Xin-De SUN ◽  
Ji-Ping ZHANG

Electronics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 889
Author(s):  
Xiaoying Deng ◽  
Peiqi Tan

An ultra-low-power K-band LC-VCO (voltage-controlled oscillator) with a wide tuning range is proposed in this paper. Based on the current-reuse topology, a dynamic back-gate-biasing technique is utilized to reduce power consumption and increase tuning range. With this technique, small dimension cross-coupled pairs are allowed, reducing parasitic capacitors and power consumption. Implemented in SMIC 55 nm 1P7M CMOS process, the proposed VCO achieves a frequency tuning range of 19.1% from 22.2 GHz to 26.9 GHz, consuming only 1.9 mW–2.1 mW from 1.2 V supply and occupying a core area of 0.043 mm2. The phase noise ranges from −107.1 dBC/HZ to −101.9 dBc/Hz at 1 MHz offset over the whole tuning range, while the total harmonic distortion (THD) and output power achieve −40.6 dB and −2.9 dBm, respectively.


Author(s):  
Titus Oyedokun ◽  
Riana H. Geschke ◽  
Tinus Stander

Abstract We present a tunable planar groove gap waveguide (PGGWG) resonant cavity at Ka-band. The cavity demonstrates varactor loading and biasing without bridging wires or annular rings, as commonly is required in conventional substrate-integrated waveguide (SIW) resonant cavities. A detailed co-simulation strategy is also presented, with indicative parametric tuning data. Measured results indicate a 4.48% continuous frequency tuning range of 32.52–33.98 GHz and a Qu tuning range of 63–85, corresponding to the DC bias voltages of 0–16 V. Discrepancies between simulated and measured results are analyzed, and traced to process variation in the multi-layer printed circuit board stack, as well as unaccounted varactor parasitics and surface roughness.


Sign in / Sign up

Export Citation Format

Share Document