Implementation of tunable resonators in planar groove gap waveguide technology

Author(s):  
Titus Oyedokun ◽  
Riana H. Geschke ◽  
Tinus Stander

Abstract We present a tunable planar groove gap waveguide (PGGWG) resonant cavity at Ka-band. The cavity demonstrates varactor loading and biasing without bridging wires or annular rings, as commonly is required in conventional substrate-integrated waveguide (SIW) resonant cavities. A detailed co-simulation strategy is also presented, with indicative parametric tuning data. Measured results indicate a 4.48% continuous frequency tuning range of 32.52–33.98 GHz and a Qu tuning range of 63–85, corresponding to the DC bias voltages of 0–16 V. Discrepancies between simulated and measured results are analyzed, and traced to process variation in the multi-layer printed circuit board stack, as well as unaccounted varactor parasitics and surface roughness.

2021 ◽  
Author(s):  
Pragnan Chakravorty

In the past few years, a new type of circuit board, named here as active substrate board (ASB), was introduced over circuit applications of diodes. Unlike a traditional printed circuit board (PCB), an ASB has its substrate made of a semiconductor. The inability of the traditional integrated circuit (IC) technology to integrate wavelength dependent radio frequency (RF) components triggered the advent of ASBs. These boards draw desirable features from IC as well as PCB technologies. Unprecedented challenges came up in modeling the different devices fabricated on an ASB owing to their large sizes and the presence of wideband microwaves. So far, modeling the effect of large sizes and ambient microwaves on DC bias of diodes have not been considered in scientific literature. Furthermore, the state of the art numerical simulators are unable to imitate the behavior of such diodes observed over measurements. Here, a semi-analytical, circuit model of distributed diodes on ASB is presented that is fairly accurate in predicting the actual behavior of the diodes. The model also opines a novel phenomenon where microwaves affect the DC characteristics of diodes with added resistances.


2020 ◽  
Author(s):  
Pragnan Chakravorty

In the past few years, a new type of circuit board, named here as active substrate board (ASB), was introduced over circuit applications of diodes. Unlike a traditional printed circuit board (PCB), an ASB has its substrate made of a semiconductor. The inability of the traditional integrated circuit (IC) technology to integrate wavelength dependent radio frequency (RF) components triggered the advent of ASBs. These boards draw desirable features from IC as well as PCB technologies. Unprecedented challenges came up in modeling the different devices fabricated on an ASB owing to their large sizes and the presence of wideband microwaves. So far, modeling the effect of large sizes and ambient microwaves on DC bias of diodes have not been considered in scientific literature. Furthermore, the state of the art numerical simulators are unable to imitate the behavior of such diodes observed over measurements. Here, a semi-analytical, behavioral DC model of three dimensional (3D), distributed diodes on ASB is presented that is fairly accurate in predicting the actual behavior of the diodes. The model also opines a novel phenomenon of an AC affecting a DC with an added resistance.


2021 ◽  
Author(s):  
Pragnan Chakravorty

In the past few years, a new type of circuit board, named here as active substrate board (ASB), was introduced over circuit applications of diodes. Unlike a traditional printed circuit board (PCB), an ASB has its substrate made of a semiconductor. The inability of the traditional integrated circuit (IC) technology to integrate wavelength dependent radio frequency (RF) components triggered the advent of ASBs. These boards draw desirable features from IC as well as PCB technologies. Unprecedented challenges came up in modeling the different devices fabricated on an ASB owing to their large sizes and the presence of wideband microwaves. So far, modeling the effect of large sizes and ambient microwaves on DC bias of diodes have not been considered in scientific literature. Furthermore, the state of the art numerical simulators are unable to imitate the behavior of such diodes observed over measurements. Here, a semi-analytical, circuit model of distributed diodes on ASB is presented that is fairly accurate in predicting the actual behavior of the diodes. The model also opines a novel phenomenon where microwaves affect the DC characteristics of diodes with added resistances.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Yusaku Ito ◽  
Kenichi Okada ◽  
Kazuya Masu

This paper proposes a novel wideband LC-based voltage-controlled oscillator (VCO) for multistandard transceivers. The proposed VCO has a core LC-VCO and a tuning-range extension circuit, which consists of switches, a mixer, dividers, and variable gain combiners with a spurious rejection technique. The experimental results exhibit 0.98 to 6.6 GHz continuous frequency tuning with −206 dBc/Hz of FoMT, which is fabricated by using a 0.18 μm CMOS process. The frequency tuning range (FTR) is 149%, and the chip area is 800 μm × 540 μm.


2012 ◽  
Vol 132 (6) ◽  
pp. 404-410 ◽  
Author(s):  
Kenichi Nakayama ◽  
Kenichi Kagoshima ◽  
Shigeki Takeda

2014 ◽  
Vol 5 (1) ◽  
pp. 737-741
Author(s):  
Alejandro Dueñas Jiménez ◽  
Francisco Jiménez Hernández

Because of the high volume of processing, transmission, and information storage, electronic systems presently requires faster clock speeds tosynchronizethe integrated circuits. Presently the “speeds” on the connections of a printed circuit board (PCB) are in the order of the GHz. At these frequencies the behavior of the interconnects are more like that of a transmission line, and hence distortion, delay, and phase shift- effects caused by phenomena like cross talk, ringing and over shot are present and may be undesirable for the performance of a circuit or system.Some of these phrases were extracted from the chapter eight of book “2-D Electromagnetic Simulation of Passive Microstrip Circuits” from the corresponding author of this paper.


Sign in / Sign up

Export Citation Format

Share Document