A Learn by Demonstration Approach for Closed-Loop, Robust, Anthropomorphic Grasp Planning

Author(s):  
Minas V. Liarokapis ◽  
Charalampos P. Bechlioulis ◽  
George I. Boutselis ◽  
Kostas J. Kyriakopoulos
Keyword(s):  
2010 ◽  
Vol 1 (1) ◽  
pp. 33-42 ◽  
Author(s):  
M. Riedel ◽  
M. Nefzi ◽  
B. Corves

Abstract. In this paper, a novel approach of grasp planning is applied to find out the appropriate grasp points for a reconfigurable parallel robot called PARAGRIP (Parallel Gripping). This new handling system is able to manipulate objects in the six-dimensional Cartesian space by several robotic arms using only six actuated joints. After grasping, the contact elements at the end of the underactuated arm mechanisms are connected to the object which forms a closed loop mechanism similar to the architecture of parallel manipulators. As the mounting and grasp points of the arms can easily be changed, the manipulator can be reconfigured to match the user's preferences and needs. This paper raises the question, how and where these grasp points are to be placed on the object to perform well for a certain manipulation task. This paper was presented at the IFToMM/ASME International Workshop on Underactuated Grasping (UG2010), 19 August 2010, Montréal, Canada.


1961 ◽  
Vol 41 (3) ◽  
pp. 245-250 ◽  
Author(s):  
George H. Bornside ◽  
Isidore Cohn
Keyword(s):  

2012 ◽  
Vol 220 (1) ◽  
pp. 3-9 ◽  
Author(s):  
Sandra Sülzenbrück

For the effective use of modern tools, the inherent visuo-motor transformation needs to be mastered. The successful adjustment to and learning of these transformations crucially depends on practice conditions, particularly on the type of visual feedback during practice. Here, a review about empirical research exploring the influence of continuous and terminal visual feedback during practice on the mastery of visuo-motor transformations is provided. Two studies investigating the impact of the type of visual feedback on either direction-dependent visuo-motor gains or the complex visuo-motor transformation of a virtual two-sided lever are presented in more detail. The findings of these studies indicate that the continuous availability of visual feedback supports performance when closed-loop control is possible, but impairs performance when visual input is no longer available. Different approaches to explain these performance differences due to the type of visual feedback during practice are considered. For example, these differences could reflect a process of re-optimization of motor planning in a novel environment or represent effects of the specificity of practice. Furthermore, differences in the allocation of attention during movements with terminal and continuous visual feedback could account for the observed differences.


2003 ◽  
Vol 14 (5) ◽  
pp. 471-477
Author(s):  
Dejan M. Novakovic ◽  
Markku J. Juntti ◽  
Miroslav L. Dukic

2004 ◽  
Author(s):  
Michael D. Byrne ◽  
Alex Kirlik ◽  
Michael D. Fleetwood ◽  
David G. Huss ◽  
Alex Kosorukoff ◽  
...  

2010 ◽  
Vol 40 (4) ◽  
pp. 42-43
Author(s):  
MIRIAM E. TUCKER

Sign in / Sign up

Export Citation Format

Share Document