Enhancing Normal-Abnormal Classification Accuracy in Colonoscopy Videos via Temporal Consistency

Author(s):  
Gustavo A. Puerto-Souza ◽  
Siyamalan Manivannan ◽  
María P. Trujillo ◽  
Jesus A. Hoyos ◽  
Emanuele Trucco ◽  
...  
2011 ◽  
Author(s):  
David S. Kreiner ◽  
Joseph J. Ryan ◽  
Samuel T. Gontkovsky

2018 ◽  
Vol 30 (7) ◽  
pp. 857-869 ◽  
Author(s):  
Kevin J. Bianchini ◽  
Luis E. Aguerrevere ◽  
Kelly L. Curtis ◽  
Tresa M. Roebuck-Spencer ◽  
F. Charles Frey ◽  
...  

Author(s):  
Кonstantin А. Elshin ◽  
Еlena I. Molchanova ◽  
Мarina V. Usoltseva ◽  
Yelena V. Likhoshway

Using the TensorFlow Object Detection API, an approach to identifying and registering Baikal diatom species Synedra acus subsp. radians has been tested. As a result, a set of images was formed and training was conducted. It is shown that аfter 15000 training iterations, the total value of the loss function was obtained equal to 0,04. At the same time, the classification accuracy is equal to 95%, and the accuracy of construction of the bounding box is also equal to 95%.


Author(s):  
Amal Alzain ◽  
Suhaib Alameen ◽  
Rani Elmaki ◽  
Mohamed E. M. Gar-Elnabi

This study concern to characterize the brain tissues to ischemic stroke, gray matter, white matter and CSF using texture analysisto extract classification features from CT images. The First Order Statistic techniques included sevenfeatures. To find the gray level variation in CT images it complements the FOS features extracted from CT images withgray level in pixels and estimate the variation of thesubpatterns. analyzing the image with Interactive Data Language IDL software to measure the grey level of images. The results show that the Gray Level variation and   features give classification accuracy of ischemic stroke 97.6%, gray matter95.2%, white matter 97.3% and the CSF classification accuracy 98.0%. The overall classification accuracy of brain tissues 97.0%.These relationships are stored in a Texture Dictionary that can be later used to automatically annotate new CT images with the appropriate brain tissues names.


Author(s):  
Mona E. Elbashier ◽  
Suhaib Alameen ◽  
Caroline Edward Ayad ◽  
Mohamed E. M. Gar-Elnabi

This study concern to characterize the pancreas areato head, body and tail using Gray Level Run Length Matrix (GLRLM) and extract classification features from CT images. The GLRLM techniques included eleven’s features. To find the gray level distribution in CT images it complements the GLRLM features extracted from CT images with runs of gray level in pixels and estimate the size distribution of thesubpatterns. analyzing the image with Interactive Data Language IDL software to measure the grey level distribution of images. The results show that the Gray Level Run Length Matrix and  features give classification accuracy of pancreashead 89.2%, body 93.6 and the tail classification accuracy 93.5%. The overall classification accuracy of pancreas area 92.0%.These relationships are stored in a Texture Dictionary that can be later used to automatically annotate new CT images with the appropriate pancreas area names.


Author(s):  
Narina Thakur ◽  
Deepti Mehrotra ◽  
Abhay Bansal ◽  
Manju Bala

Objective: Since the adequacy of Learning Objects (LO) is a dynamic concept and changes in its use, needs and evolution, it is important to consider the importance of LO in terms of time to assess its relevance as the main objective of the proposed research. Another goal is to increase the classification accuracy and precision. Methods: With existing IR and ranking algorithms, MAP optimization either does not lead to a comprehensively optimal solution or is expensive and time - consuming. Nevertheless, Support Vector Machine learning competently leads to a globally optimal solution. SVM is a powerful classifier method with its high classification accuracy and the Tilted time window based model is computationally efficient. Results: This paper proposes and implements the LO ranking and retrieval algorithm based on the Tilted Time window and the Support Vector Machine, which uses the merit of both methods. The proposed model is implemented for the NCBI dataset and MAT Lab. Conclusion: The experiments have been carried out on the NCBI dataset, and LO weights are assigned to be relevant and non - relevant for a given user query according to the Tilted Time series and the Cosine similarity score. Results showed that the model proposed has much better accuracy.


2020 ◽  
Vol 13 (4) ◽  
pp. 627-640 ◽  
Author(s):  
Avinash Chandra Pandey ◽  
Dharmveer Singh Rajpoot

Background: Sentiment analysis is a contextual mining of text which determines viewpoint of users with respect to some sentimental topics commonly present at social networking websites. Twitter is one of the social sites where people express their opinion about any topic in the form of tweets. These tweets can be examined using various sentiment classification methods to find the opinion of users. Traditional sentiment analysis methods use manually extracted features for opinion classification. The manual feature extraction process is a complicated task since it requires predefined sentiment lexicons. On the other hand, deep learning methods automatically extract relevant features from data hence; they provide better performance and richer representation competency than the traditional methods. Objective: The main aim of this paper is to enhance the sentiment classification accuracy and to reduce the computational cost. Method: To achieve the objective, a hybrid deep learning model, based on convolution neural network and bi-directional long-short term memory neural network has been introduced. Results: The proposed sentiment classification method achieves the highest accuracy for the most of the datasets. Further, from the statistical analysis efficacy of the proposed method has been validated. Conclusion: Sentiment classification accuracy can be improved by creating veracious hybrid models. Moreover, performance can also be enhanced by tuning the hyper parameters of deep leaning models.


Sign in / Sign up

Export Citation Format

Share Document