scholarly journals Embedding Sensors in FDM Plastic Parts During Additive Manufacturing

Author(s):  
Lexey R. Sbriglia ◽  
Andrew M. Baker ◽  
James M. Thompson ◽  
Robert V. Morgan ◽  
Adam J. Wachtor ◽  
...  
2021 ◽  
Author(s):  
WARUNA SENEVIRATNE, ◽  
JOHN TOMBLIN ◽  
BRANDON SAATHOFF

Additive manufacturing has been adopted in many aerospace and defense applications to reduce weight and buy-to-fly ratios of low-volume high- complexity parts. Polymer-based additive manufacturing processes such as Fused Deposition Modeling (FDM) has enabled aerospace manufactures to improve the structural efficiency of parts through generative design or topology optimization. This level of design freedom did not exist in the past due to limitations associated with traditional manufacturing processes such as subtractive machining. Improvements in the material and the maturation of the FDM process has led to the production of many non-structural flightworthy parts used in aircraft today. Polymer-based additive manufacturing can be further leveraged in aerospace applications with the addition of electroplated coatings that act as reinforcement. While many of the commonly known electroplated coating applications involve enhancing the part appearance, electroplated coatings can also improve the strength, stiffness, and durability of plastic parts. Depending on the use case, the thickness of the metallic plating material (combination of copper and nickel) can be tailored to achieve the desired composite properties (metal and polymer). In this research, the tensile and flexural mechanical properties were assessed for Ultem™ 9085 FDM printed specimens and compared to specimens with metallic coating thicknesses of approximately 75-μm, 150-μm, and 300-μm. Non- destructive inspections using x-ray computed tomography were performed prior to mechanical testing to assess the electroplated coating thickness variation and overall quality.


2020 ◽  
Vol 110 (07-08) ◽  
pp. 521-525
Author(s):  
Michael Baranowski ◽  
Markus Netzer ◽  
Sven Coutandin ◽  
Jürgen Fleischer

Die additive Fertigung erlaubt eine standortunabhängige sowie de facto individualisierte Produktion von Bauteilen mit nahezu beliebiger Komplexität. Für die flexible Herstellung von hochfunktionalen Hybridbauteilen fehlt es allerdings an entsprechenden Maschinenkonzepten sowie Automatisierungslösungen. Durch ein hier vorgestelltes Anlagenkonzept sollen Funktionskomponenten in den additiven Herstellungsprozess integriert und neue Möglichkeiten der Bauteilhybridisierung erforscht werden.   Additive manufacturing allows a location-independent and de facto individualized production of components of almost any complexity. However, there is a need for appropriate machine concepts and automation solutions for the flexible production of highly functional hybrid components. A plant concept presented here is intended to integrate functional components into the additive manufacturing process and to explore new possibilities for component hybridization.


2011 ◽  
Vol 199-200 ◽  
pp. 1984-1987 ◽  
Author(s):  
Olaf Diegel ◽  
Sarat Singamneni ◽  
Ben Huang ◽  
Ian Gibson

This paper describes a curved-layer additive manufacturing technology that has the potential to print plastic components with integral conductive polymer electronic circuits. Researchers at AUT University in New Zealand and the National University of Singapore have developed a novel Fused Deposition Modeling (FDM) process in which the layers of material that make up the part are deposited as curved layers instead of the conventional flat layers. This technology opens up possibilities of building curved plastic parts that have conductive electronic tracks and components printed as an integral part of the plastic component, thereby eliminating printed circuit boards and wiring. It is not possible to do this with existing flat-layer additive manufacturing technologies as the continuity of a circuit could be interrupted between the layers. With curved-layer fused deposition modeling (CLFDM) this problem is removed as continuous filaments in 3 dimensions can be produced, allowing for continuous conductive circuits.


2011 ◽  
Vol 467-469 ◽  
pp. 662-667 ◽  
Author(s):  
Olaf Diegel ◽  
Sarat Singamneni ◽  
Ben Huang ◽  
Ian Gibson

This paper describes an additive manufacturing technology that has the potential to print plastic components with integral conductive polymer electronic circuits. This could have a major impact in the fields of robotics and mechatronics as it has the potential to allow large wiring looms, often an issue with complex robotic systems, to be printed as an integral part of the products plastic shell. This paper describes the development of a novel Fused Deposition Modeling (FDM) process in which the layers of material that make up the part are deposited as curved layers instead of the conventional flat layers. This opens up possibilities of building curved plastic parts that have conductive electronic tracks and components printed as an integral part of the plastic component, thereby eliminating printed circuit boards and wiring. It is not possible to do this with existing flatlayer additive manufacturing technologies as the continuity of a circuit could be interrupted between the layers. With curved-layer fused deposition modeling (CLFDM) this problem is removed as continuous filaments in 3 dimensions can be produced, allowing for continuous conductive circuits.


2018 ◽  
Vol 10 (7) ◽  
pp. 772-782
Author(s):  
Johann Sence ◽  
William Feuray ◽  
Aurélien Périgaud ◽  
Olivier Tantot ◽  
Nicolas Delhote ◽  
...  

AbstractThis paper illustrates the different possibilities given by additive manufacturing technologies for the creation of passive microwave hardware. The paper more specifically highlights a prototyping scheme where the 3D-printed plastic parts can be used as initial proofs of concept before considering more advanced 3D-printed parts (metal parts, for instance). First, a characterization campaign has been made on common plastics used by a 3D printer using the fused deposition modeling and material jetting (Polyjet©) technologies. The impact of the manufacturing strategy (high-speed or high-accuracy) on the part roughness, as well as on the dielectric material permittivity and loss tangent, has been specifically studied at 10 and 16 GHz. Based on a specifically optimized and deeply explained characterization method, the conductivity of a coating based on silver paint has also been characterized on such plastic parts at 10 and 40 GHz. These plastic materials and coating have been used for the creation of quasi-elliptic and tuning-free bandpass filters centered at 6 and 12 GHz and compared with a similar filter made of stainless steel by selective laser melting. Finally, a compact rectangularTE10to circularTE01mode converter also undergoes one prototyping step out of plastic before moving to an advanced part made out of stainless steel. This mode converter, which is made in a single part, is designed to operate from 28 to 36 GHz as a tuning-free final demonstrator.


Author(s):  
Andreas Schroeffer ◽  
Matthias Trescher ◽  
Konstantin Struebig ◽  
Yannik Krieger ◽  
Tim C. Lueth

Abstract The generation of plastic parts in small volume batches has an enormous economic significance. Application fields for parts in small lot sizes are the fabrication of prototypes in the design process or individualized products. The goal thereby often is not only to produce show objects, but functional parts with specific materials, high dimensional accuracy and proper mechanical properties in a short amount of time. The conventional way to produce thermoplastic plastic parts is given by injection molding and extrusion. Characteristics for this technology are the resulting good and homogeneous mechanical component properties, but shape freedom is limited and the process is time consumptive because an individual tool is needed for each product. Depending on the design of the part the geometry of the tool can be complex and an iterative process is necessary to create a suitable mold. On the other hand, the technology of additive manufacturing is a growing market for the quick and cheap production of parts as prototypes, but still the range of materials is limited and anisotropic mechanical component properties are ongoing problems. The combination of both technologies is known as rapid tooling, where the mold is produced in an additive manufacturing process and then used in an injection molding or casting process. This approach combines the benefits of both technologies in term of time and cost efficiency and good component properties. Problems here are the combination of different materials for mold and component and the missing process knowledge and automatization. In this paper an extrusion-based additive manufacturing technology is used to combine additive manufacturing and injection infill generation for thermoplast in one process. The proposed working principle is to generate the outer contour of the part by filament extrusion as mold to ensure high accuracy and good surface quality and fill the mold using an extrusion process of polymer melt without filament generation. Accordingly, the mold becomes part of the component and the same material can be used for the mold and the infill. Since the viscosity of most thermoplastic polymer melts is too high to fill big structures and undercuts, an algorithm is proposed to generate a chamber structure inside the part. Consequently, the fabrication process consists of several iterative cycles of mold generation and injection processes. For this paper polyamide 6 is used to demonstrate the process. Experiments were performed to find the optimal chamber geometry and size to avoid holes and generate a high quality infill. Several component properties such as density, tensile strength and fabrication time are analyzed. In spite of still existing blowholes, a higher component density could be achieved with the proposed process compared to additive manufacturing. However, the tensile strength is still significantly lower. The failures appeared at the weld lines, where warm polymer melt was injected to already colder chambers below. Still manual processes are sources of possible defects as well. The integration of a RFID chip is shown as an additional feature of the process of easy integration of passive electronic elements.


2019 ◽  
Vol 26 (5) ◽  
pp. 881-894
Author(s):  
Antonio Armillotta

Purpose This paper aims to investigate the feasibility of adding macro-textures to triangle meshes for additive manufacturing (AM) focusing on possible time and quality issues in both software processing and part fabrication. Design/methodology/approach A demonstrative software tool was developed to apply user-selected textures to existing meshes. The computational procedure is a three-dimensional extension of the solid texturing method used in computer graphics. The tool was tested for speed and quality of results, considering also the pre- and post-processing operations required. Some textured meshes were printed by different processes to test build speed and quality. Findings The tool can handle models with realistic complexity in acceptable computation times. Parts are built without difficulties or extra-costs achieving a good aesthetic yield of the texture. Research limitations/implications The tool cannot reproduce sample patterns but requires the development of a generation algorithm for different type of textures. Mesh processing operations may take a long time when very fine textures are added to large parts. Practical implications Direct texturing can help obtain parts with aesthetic or functional textures without the need for surface post-treatments, which can be especially difficult and expensive for plastic parts. Originality/value The proposed method improves the uniformity and consistency of textures compared to existing approaches, and can support future systematic studies on the detail resolution of AM processes.


Sign in / Sign up

Export Citation Format

Share Document