Fluidized-Bed Reactors: Processes and Operating Conditions

Author(s):  
John G. Yates ◽  
Paola Lettieri
2020 ◽  
Vol 5 (2) ◽  
pp. 278-288 ◽  
Author(s):  
Riccardo Uglietti ◽  
Mauro Bracconi ◽  
Matteo Maestri

PA and ISAT algorithms are developed to speed-up the CFD–DEM simulations of fluidized reactors. Also, a selection procedure of the most effective algorithm according to the operating conditions is developed, enabling the simulation of lab reactors.


Author(s):  
Robert Macias ◽  
Juan Maya ◽  
Farid Chejne ◽  
Carlos Londoño ◽  
Javier De La Cruz

This work proposes a new strategy for the scaling of bubbling fluidized bed reactors. This strategy is based on the bubble size distribution, bubble coalescence phenomenon, and the chemical reactivity, allowing to deduct the dimensionless number Chejne-Macias-Maya that must remain constant at different scales to guarantee the fluidization regime. The proposed strategy is validated from computational simulations carried out at different operating conditions. Additionally, limits for the validity of this scaling strategy were determined, which agrees with those reported in the literature.


2019 ◽  
Vol 73 (1) ◽  
pp. 47-62
Author(s):  
Ana Popovic ◽  
Sonja Milicevic ◽  
Vladan Milosevic ◽  
Branislav Ivosevic ◽  
Jelena Carapic ◽  
...  

Industrial wastewater contains recalcitrant organic compounds with a very complex chemical structure, built of molecules with long chains of carbon atoms and attached different functional groups. Chemical or biological treatments used for removal of these compounds are being replaced with more efficient non-commercial wastewater treatments. Advanced oxidation processes overcome limitations of conventional methods regarding formation of by-products during degradation of recalcitrant organic compounds. The Fenton process, or use of the Fenton?s reagent, has became one of the most utilized processes due to simplicity, economy and accessible amounts of ferrous iron and hydrogen-peroxide, which are used in the process. In specific, the Fenton?s reagent is a catalytic-oxidative mixture of these two components. The ferrous iron Fe2+ initiates and catalyzes decomposition of H2O2, resulting in generation of hydroxyl radicals, which are the main radical species in the process able to detoxify several organic pollutants by oxidation. In addition, other mechanisms besides formation of hydroxyl radicals may occur during the Fenton process and participate in degradation of target pollutants. Generally, the treatment efficiency relies upon the physical and chemical properties of target pollutants and the process operating conditions. The main disadvantage of the Fenton process is production of sludge formed by iron hydroxide at certain pH values. An alternative solution for this problem is application of this process in fluidized bed reactors. This paper presents an overview of Fenton and photo-Fenton processes in dispersed systems for removal of different industrial wastewater pollutants. The most important process parameters, required for efficient degradation of recalcitrant organic compounds are also described, such as the catalyst type, pH value, temperature, H2O2 concentration and retention time. Strict control of Fenton process parameters in fluidized bed reactors at desired values can bring these systems to the commercial use.


Energies ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1424 ◽  
Author(s):  
Chen Yang ◽  
Haochuang Wu ◽  
Kangjie Deng ◽  
Hangxing He ◽  
Li Sun

The fluidized reactor is widely used in a number of chemical processes due to its high gas-particle contacting efficiency and excellent performance on solid mixing. An improved numerical framework based on the multiphase particle-in-cell (MP-PIC) method has been developed to simulate the processes of gas–solid flow and chemical reactions in a fluidized bed. Experiments have been carried out with a 3-MW circulating fluidized bed with a height of 24.5 m and a cross section of 1 m2. In order to obtain the relationship between pollutant discharge and operating conditions and to better guide the operation of the power plant, a series of tests and simulations were carried out. The distributions of temperature and gas concentration along the furnace from simulations achieved good accuracy compared with experimental data, indicating that this numerical framework is suitable for solving complex gas–solid flow and reactions in fluidized bed reactors. Through a series of experiments, the factors affecting the concentration of NOx and SOx emissions during the steady-state combustion of the normal temperature of powder coke were obtained, which provided some future guidance for the operation of a power plant burning the same kind of fuel.


RSC Advances ◽  
2018 ◽  
Vol 8 (50) ◽  
pp. 28293-28312 ◽  
Author(s):  
Panut Bumphenkiattikul ◽  
Sunun Limtrakul ◽  
Terdthai Vatanatham ◽  
Parinya Khongprom ◽  
Palghat A. Ramachandran

The effects of operating conditions and scaling-up on reactor temperature control and performance in propylene polymerization fluidized bed reactors were studied by phenomenological and CFD models.


2019 ◽  
Vol 70 (5) ◽  
pp. 1507-1512
Author(s):  
Baker M. Abod ◽  
Ramy Mohamed Jebir Al-Alawy ◽  
Firas Hashim Kamar ◽  
Gheorghe Nechifor

The aim of this study is to use the dry fibers of date palm as low-cost biosorbent for the removal of Cd(II), and Ni(II) ions from aqueous solution by fluidized bed column. The effects of many operating conditions such as superficial velocity, static bed height, and initial concentration on the removal efficiency of metal ions were investigated. FTIR analyses clarified that hydroxyl, amine and carboxyl groups could be very effective for bio-sorption of these heavy metal ions. SEM images showed that dry fibers of date palm have a high porosity and that metal ions can be trapped and sorbed into pores. The results show that a bed height of 6 cm, velocity of 1.1Umf and initial concentration for each heavy metal ions of 50 mg/L are most feasible and give high removal efficiency. The fluidized bed reactor was modeled using ideal plug flow and this model was solved numerically by utilizing the MATLAB software for fitting the measured breakthrough results. The breakthrough curves for metal ions gave the order of bio-sorption capacity as follow: Cd(II)]Ni(II).


Sign in / Sign up

Export Citation Format

Share Document